Institute of Metals Division - A Preliminary Investigation of the Zirconium-Beryllium System by Powder Metallurgy Methods - Discussion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. H. Hausner H. S. Kalish
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
327 KB
Publication Date:
Jan 1, 1951

Abstract

M. Hansen—This paper certainly is an interesting study. Although I have not had too much experience in the powder metallurgical methods of studying phase equilibria, I would like to say the following concerning the interpretations of the results obtained: 1. The existence of a zirconium-rich eutectic having a melting point close to 950°C and containing approximately 5 pct beryllium is well established. 2. Undoubtedly sintering of the original compacts (i.e., without repressing and resintering at 1350°C) resulted in a condition being far from equilibrium, even in the low-melting point zircon-rich region where undissolved zirconium particles have been observed. This means that only partial reaction between the component powders has taken place. 3. In preparing and handling powder mixtures for pressing and sintering, we have found that with powders differing considerably in density, and also in particle size, separation in layers of different composition may occur. This means that a concentration gradient would exist within such samples. This phenomenon may, at least to some extent, account for the difference in microstructure of the top and bottom regions of some of the sintered samples. If this is the case, density figures for some of the nominal compositions would not represent actual densities of those mixtures. 4. Fig. 1 shows that the low densities of mixtures with 40 and 60 pct beryllium sintered at 1350°C are changed to much higher densities if the products sintered at 1100°C are repressed and resintered at 1350°C, whereby an approach toward equilibrium takes place. This would mean that the low density and growth in volume is due to nonequilibrium conditions. If this is true, would it be justified, then, to conclude that "the remarkable growth of the alloys in the vicinity of 40 to 60 pct Be indicates the formation of a high-melting point phase, probably accompanied by a considerable change in volume due to a large alteration of the crystal structure from that of the original compounds"? If some compound formation has taken place already during the first sintering at 950" to 1350°C, more compound would be formed by repressing and re-sintering of the 1100" samples. This treatment, however, results in higher, rather than lower, densities. In general, the density-composition curve of alloy systems containing one or more intermediate phases is characterized by a more or less defined contraction (decrease in specific volume, increase in density) over the "theoretical" density. Does not discrepancy exist between the two statements that "growth of the alloy indicates the formation of a high-melting phase . . ." and "even at 1350°C, no indications of sintering have been observed"? 5. I am not sure that the explanation given for the fact that fig. 4 did not reveal as much eutectic as the top portions of the mixture with 2 pct Be, is correct. The density of the melt containing only 5 pct Be or even perhaps less, is not too much different from that of the nominal composition. The reason might be also that there was already some separation of the components in the pressed compact. 6. I do not understand why the microstructure of the bottom regions of the compact with 5 pct Be (fig. 6) is so different from that of the top regions (fig. 5). The compact was melted on sintering at 1100°C. Its composition lies close to the eutectic point. There should be at least some lamellar structure in the bottom regions too; otherwise, the composition of top and bottom must have been very different after sintering, because the eutectic is said to extend as far as the composition ZrBe2. In case the white and gray areas of fig. 6 are both gamma, and the black areas undissolved zirconium, this composition would be close to the phase coexisting with zirconium, that is, ZrBe2, according to the hypothetical diagram, or a compound richer in zirconium. 7. Figs. 9 and 10 are not mentioned in the text. 8. The great difference in microstructure of the composition 20 pct Be of figs. 8 and 14 on one side and fig. 15 on the other side proves that sintering at 950" and 1100°C results only in partial reaction of the powers. 9. The mixture with 60 pct Be (fig. 19) seems to consist of two phases, rather than one phase, one interspersed in a matrix of another. 10. The statement that the eta phase "may be an intermetallic compound or the product of a peritectic or monotectic reaction" seems to be misleading, because the product of a peritectic or monotectic reaction in this region of the system must be an intermetallic compound. 11. If there is some solid solubility of Be in alpha and beta-Zr, it would be expected to be higher in beta-Zr (b.c.c.) than in alpha-Zr (h.c.p.). The temperature of the polymorphic transformation of zirconium then would be lowered, rather than increased. In accordance with this, Battelle has found that the transformation point of titanium is decreased by beryllium. 12. In case the phases present in alloys with 80, 90, and 95 pct Be are identical (which appears to be correct), it is striking that the relative amounts of both phases (eta and beryllium) are not too different within this wide range of composition. With 60 to 65 pct Be
Citation

APA: H. H. Hausner H. S. Kalish  (1951)  Institute of Metals Division - A Preliminary Investigation of the Zirconium-Beryllium System by Powder Metallurgy Methods - Discussion

MLA: H. H. Hausner H. S. Kalish Institute of Metals Division - A Preliminary Investigation of the Zirconium-Beryllium System by Powder Metallurgy Methods - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account