Institute of Metals Division - A Study of the Microstructure of Titanium Carbide (Discussion, p. 1277)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 983 KB
- Publication Date:
- Jan 1, 1956
Abstract
It was found that despite the similarity of chemical analyses of different titanium carbides used as base materials for cermets, the physical properties, especially transverse-rupture strengths, of test bars were different. Hence this metallographic study attempts to link physical properties to micro-structures. It is shown that microstructure, grain shape, and grain growth are functions of three interrelated factors: 1—powder production procedure, 2—surface conditioning of the particles, and 3—impurities either contained in the original powder or acquired during ball milling. An explanation is offered for the "coring effect," long observed, but heretofore of unknown origin. The explanation is based on assumption of an oxide film and on chemical analyses which substantiate these findings. TITANIUM carbide has become in recent years a material of great interest in the high temperature field. Consequently, many manufacturers in the United States and Europe are producing titanium carbide for cermet applications as well as for additions to the well known tungsten carbide tools. All present commercial processes of titanium carbide production utilize the chemical reaction of titanium dioxide and carbon to form as nearly as possible stoichiometric Tic. This reaction is carried out in three ways: 1—in a menstruum of molten metal,' 2—in the solid state, either in a protective atmosphere2 or in vacuum;" or 3—in an are-melting operation. In spite of the fact that the pure carbides obtained in these operations are almost identical chemically, the physical properties vary considerably when they are combined with a binder (Ni, Co) to form cermets. This fact led the authors to examine metal-lographically nickel-bonded titanium carbide in order to find the possible reasons for this behavior. Materials and Methods Five different titanium carbides were used in this investigation. They are identified in Table I. The first four materials were used in the as-received condition. Material E, received in lumps, was crushed to —100 mesh and carried through a flotation process in order to bring its graphite content in line with the other products. A Galagher flotation cell was used with pine oil as frothing agent. The chemical analyses of the investigated materials are given in Table 11. The binder used was carbonyl nickel of 9 to 14 microns particle size, supplied by A. D. Mackay. The materials were ball milled at a ball to charge ratio of 6:1 using procedures described under "Experiments and Results." All particle sizes mentioned are averages determined with a Fisher Sub-sieve Sizer. Test bars (lx0.40x0.16 in.) were prepared by 1—hot pressing to 85 to 95 pct of theoretical density at pressures between 1 and 1½ tsi and temperatures from 1600" to 1800°C, 2-—-cold presssing after 3 pct camphor had been added, or 3—wet pressing, both 2 and 3 at pressures between 5 and 10 tsi. All pressed bars were sintered in a vacuum of 105 to 10-6 mm Hg for 2 hr at 1350 °C. Transverse-rupture strengths were determined by breaking on a Baldwin Universal Testing Machine over a 9/16 in. span. Densities were measured by water displacement. The preparation of the specimens for micrographs was done according to Silverman and Doshna Luscz." All magnifications are at X1000. A sodium picrate electrolytic etch was used. Experiments and Results The influence of ball-milling procedure, ball-milling medium, pressing procedure, and sintering procedure on the microstructure of 80/20 — TiC/Ni were investigated. Ball Milling of Materials A, B, and C in a Steel Mill: Figs. 1 and 2 show microstructures of hot-pressed and vacuum-sintered test bars of materials A and B after the respective materials had been ball milled to 2.1 microns particle size in a steel mill and mixed with 20 pct Ni binder. Material A (Fig. 1) shows considerable grain growth. Also evident is a tendency of the carbide grains to coalesce. The density is 98 pct and the low transverse-rupture strength of 111,000 psi is probably caused by many large grains and an unfavorable packing factor. Almost all grains show a slight indication of "coring." Material B (Fig. 2), although showing grain growth, still has many small particles and a better distribution of binder and carbide due to the relative absence of the coalescing tendency. "Coring" can be observed in almost all grains. The high transverse-rupture strength of 179,000 psi and the density of 100 pct are believed to be due to the many small grains completely surrounded by the binder phase. There is also a preference to form spherical grains with material A, while most grains of material B preserve their angular shapes. Material C, of which no picture is given, stays between A and B in every respect. Rounding of some grains can be observed as well as coring, but the latter to a lesser degree than with material B. Its densification is good and the transverse-rupture strength obtained is 142,000 psi. Ball Milling of Materials A, B, C, and E in a WC Mill: When the Tic powders were ball milled to 2 microns particle size in a we mill, then ball-mill mixed with 20 pct Ni binder, hot pressed, and vacuum
Citation
APA:
(1956) Institute of Metals Division - A Study of the Microstructure of Titanium Carbide (Discussion, p. 1277)MLA: Institute of Metals Division - A Study of the Microstructure of Titanium Carbide (Discussion, p. 1277). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.