Institute of Metals Division - A Study of the Recrystallization Kinetics and Tensile Properties of an Internally Oxidized Solid- Solution Aluminum-Silver Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. Gatti R. L. Fullman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
1818 KB
Publication Date:
Jan 1, 1960

Abstract

A very fine dispersion of aluminum oxide is produced by internal oxidation of solid-solution alloy of 0.14 pet A1 in Ag. The particle size of the aluminum oxide is approximntely 50 to 100A in radius. The yield strength of the alloy is increased markedly by internal oxidation. A further increase in strength is produced by cold working the internally oxidized alloy. Recrystallization is retarded by the finely dispessed aluminum oxide particles, so that the strength increase resulting from cold work is retained on annealing at temperatures 14 to about 700°C. MANY workers'-3 in the past have studied various aspects of the internal oxidation of aluminum-silver alloys. This paper is an extension of these studies with emphasis placed on the effect of time and temperature of annealing on the strength of these alloys after oxidation and subsequent cold working. Two general conditions are necessary to internally oxidize an alloy. First, oxygen must diffuse through the base material more rapidly than does the addition; otherwise oxidation will take place as a surface layer. Secondly, the affinity of oxygen for the addition must be greater than for the base material. After internal oxidation of certain alloys takes place, a marked increase in hardness accompanied by higher yield stress and improved creep properties is noted, presumably as a result of the highly dispersed oxide within the base material. Meijering and Druyvesteyn1 also noted that the internally oxidized portion of a partly oxidized alloy failed to recrys-tallize under annealing conditions that led to coinplete recrystallization of the unoxidized part. EXPERIMENTAL-METHODS AND PROCEDURES Few alloys can be made to contain a second phase that is extremely stable at high temperatures. Silver plus aluminum in solid solution was chosen for these internal oxidation studies because of the high rate of oxygen diffusion through silver and the very stable nature of aluminum oxide. Two alloys were vacuum cast. The nominal compositions were: Alloy A—1 pct Al, balance Ag; Alloy B—0.1 pct Al, balance Ag. Chemical analysis, which does not distinguish between aluminum and aluminum oxide, showed the conlposition to be: Alloy A—1.6 pct Al, and Alloy B—0.14 pct Al. The ingots were machined for surface cleaning, swaged and drawn to 0.020-in. diam wire. A sample 20 ft long of the 0.020-in. dianl wire of each composition was annealed 24 hr at 800°C in pure dry hydrogen. Each wire was then cut into two equal pieces. Photomicrographs of the 0.14 pct A1 alloy are shown in Fig. 1, the annealed 0.020-in. wire at the left and the oxidized wire to the right. The oxidation treatment for the first set of data was 1000 hr at 800°C in air. After this treatment the 1 pct A1 proved to be brittle. It is assumed that high alunlinum oxide concentration at the grain boundaries was responsible. The 0.14 pct Al wire remained ductile and all further data were derived using this alloy. One-half of this wire, about 5 ft, plus 5 ft of as-homogenized wire, was then drawn cold to 0.005 in. diam. All tensile tests were conducted with an Instron Engineering Corp. tensile-testing machine, Model TT-B. Unless otherwise indicated, the tests were made at room temperature with a strain rate of 0.1 per min. All metallographic samples were etched with an aqueous solution of 2 pct each of CrO3 and H2SO4 . EXPERIMENTAL RESULTS AND DISCUSSION PARTICLE SIZE DETERMINATION A study was made of the particle size of the aluminum oxide produced in the samples of Ag + 0.14 pct Al, oxidized 1000 hr at 800°C. A cross section of the as-oxidized wire was mounted in bakelite, polished, and etched with an aqueous solution of 2 pct each of CrO3 and H2SO4. The specimen was then thoroughly cleaned by stripping successive coatings made by applying 10 pct nitrocellulose in amyl acetate. The final replica of the cross section was made by applying 2 pct nitrocellulose in amyl acetate. The replica was stripped, transferred to a copper screen, shadow cast with chromium at 10 deg and photographs taken using a Phillips Metallix electron microscope at an accelerating potential of 100 kv. A photograph of an etched sample of the as-oxidized material is shown in Fig. 2. We believe the pits in the photograph are places were A12O3 inclusions were sitting in the matrix. By inspection, it appears that the volume fraction ob-
Citation

APA: A. Gatti R. L. Fullman  (1960)  Institute of Metals Division - A Study of the Recrystallization Kinetics and Tensile Properties of an Internally Oxidized Solid- Solution Aluminum-Silver Alloy

MLA: A. Gatti R. L. Fullman Institute of Metals Division - A Study of the Recrystallization Kinetics and Tensile Properties of an Internally Oxidized Solid- Solution Aluminum-Silver Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account