Institute of Metals Division - Alloys of Titanium with Carbon, Oxygen and Nitrogen

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 673 KB
- Publication Date:
- Jan 1, 1951
Abstract
IN THE past year, Jaffee and Campbell' and Finlay and Snyder2 reported on the mechanical properties of titanium-base alloys, some of which were in the same ranges of composition as are covered in this paper. In this paper, evidence confirming that given by Finlay and Snyder on the effects of carbon, oxygen, and nitrogen on titanium will be presented; and, in addition, new data will be given on the effects of these elements on the flow properties and phase transformation of titanium. Materials and Preparation of Alloys The preparation and general properties of iodide titanium have been adequately described elsewhere.' , As-deposited iodide titanium rod, prepared at Battelle, of Vickers hardness less than 90 was employed as the base metal in the present work. This was the same material as that used by Finlay and Snyder.2 The probable analysis reported by them for standard quality metal holds here also: N 0.005 pct, 0 0.01 pct, C 0.03 pct, Fe <0.04 pct, A1 <0.05 pct, Si <0.03 pct, and Ti 99.85 pct. Carbon was added in the form of flake graphite supplied by the Joseph Dixon Crucible Co. Oxygen was added in the form of c.p. grade TiO, powder, produced by J. T. Baker Chemical Co. Nitrogen was added in Ti3N4 powder, supplied by the Remington Arms Co. Individual ingots weighed 7 or 8 g. Carbon, oxygen, or nitrogen was added by placing the corresponding powder in a capsule made from as-deposited iodide titanium rods and melting the capsule with the balance of the charge. The charge was are-melted with a tungsten electrode on a water-cooled copper hearth under a partial vacuum of very pure argon (99.92 pct minimum). Melting was practically contamination free. Vick-ers hardness increases of less than 10 points were normal for unalloyed iodide titanium control melts. Nitrogen analyses of are-melted iodide titanium showed a nitrogen content of 0.005 pct, about the same as is present in the as-deposited rod. No tungsten pickup was found in a melt of iodide titanium analyzed for tungsten. Weight losses in melting nitrogen-free alloys were very small and varied consistently from nil to 0.015 g (0 to 0.2 pct). This permitted the use of nominal composition for these alloys. Chemical analyses made for carbon, which can be analyzed conveniently by combustion methods, justified this procedure. Where nitrogen was added, considerable splattering took place. Here it was necessary to analyze for nitrogen by the Kjeldahl method. The ingots were hot rolled at 850°C to about 0.045 in. thick. After hot rolling, the strips were descaled by mechanical grinding, and then given a cold reduction of 5 to 10 pct to insure a uniform thickness throughout the length of the specimen. The edge strips and the tensile strips were annealed in a vacuum of 1x10-4 mm Hg pressure for 3 1/2 hr at 850°C and furnace cooled. Methods of Investigation Hardness Measurements: At least five Vickers hardness measurements were taken using a 10-kg load on each sample in the following conditions: (1) top and bottom of each ingot, (2) top and bottom surface of as-rolled and annealed sheet, and (3) on cross-section of annealed sheet and all quenched specimens. Tensile Tests: Tensile tests were conducted on Baldwin-Southwark testing machines having load ranges of 600 or 2000 lb. Tests were made on 1-in. gauge-length specimens, 3 1/4-in. overall length, 1/2 in. wide, 0.040 in. thick, with a reduced section 1 1/4 in. long and 0.250 in. wide. Two SR-4, A-7 strain gauges, one mounted on each side of the specimen, were used to measure the strain over a limited range to determine the modulus of elasticity. After the modulus of elasticity readings had been taken, load vs. strain readings were taken, using only one strain gauge, at increments of 0.0001 in. until the yield points were passed and then at 0.001-in. increments to the limit of the strain-gauge indicator (0.02 in.). Strain readings above 0.02 in. per in. were taken every 0.01 in., using dividers to measure the strain between the 1-in. gauge marks until the maximum load had been reached. Crosshead speed, when using the SR-4 gauges, was 0.005 in. per min, and, when using dividers, 0.01 in. per min. Flow Curves: Flow curves were determined using the true stress-true strain data obtained during the tension test. The usefulness of this type of information has been dealt with very adequately elsewhere by L. R. Jackson,' J. H. Hollomon,6 and many others. Flow curves of true stress vs. true strain could be converted to the more conventional cold-work curve of 0.2 pct offset yield strength vs. percentage of cold reduction by means of the transformation, 1/1 = 1/1-R, where R is the fraction reduction in cold working. Thus, the true strains corresponding to percentage reduction can be calculated, and the 0.2 pct offset yield strengths scaled off the — 6 curve by taking the true stresses corresponding to the values of 6 + 0.002 strain. Heat Treatment: For the transformation studies, the alloys were heat treated in a horizontal-tube furnace using a dried 99.92 pct argon atmosphere, and quenched into water. Essentially no contamination was found after several hours of heat treatment at temperatures up to 1050°C. Metallography: Specimens were prepared in the
Citation
APA:
(1951) Institute of Metals Division - Alloys of Titanium with Carbon, Oxygen and NitrogenMLA: Institute of Metals Division - Alloys of Titanium with Carbon, Oxygen and Nitrogen. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1951.