Institute of Metals Division - Aqueous Corrosion of Zirconium Single Crystals

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 456 KB
- Publication Date:
- Jan 1, 1964
Abstract
Single-crystal wafers of zirconium have been exposed to 680°F neutral water. The single crystals were of known orientation and weight-gain data as a function of crystal orientation were obtained. These data show that all the crystal faces studied obeyed a cubic rate law out to the time of transition whereupon the crystals corroded at an approximately linear rate. The time to transition varied from 114 days for (1074) crystals to about 325 days for the (2130) faces. The epitaxial relationship be-tween metal and monoclinic oxide was found to be (0001) H (111) and [1120] 11 [101]. A black tight adherent oxide layer was formed on the crystals in the pretransition range. This black oxide was found to be monocrystalline. The white corrosion product produced after transition was found to be polycrys-talline but highly oriented. X-ray line-broadening studies found that the black oxide was a highly strained structure whereas the white oxide was relatively strain-free. These results indicate a strain-induced re crystallization or fragmentation accompanies the change from protective black oxide to nonprotective white oxide. ZIRCONIUM alloys have been used quite extensively in high-temperature aqueous environments. Alloy additions can be made to commercial sponge zirconium which enhance the corrosion resistance of the zirconium in both water and steam media, which raise the tolerance limit for certain impurities detrimental to corrosion resistance, and which reduce the amount of free hydrogen pickup during corrosion. The development of the corrosion-resistant zirconium alloys has been a long and tedious job involving trial and error methods. This technique has been necessary because of a lack of fundamental data and hence understanding of the corrosion mechanisms. The objective of the work described herein was to provide some fundamental data with respect to the aqueous corrosion of zirconium crystals as a function of the orientation of the exposed surfaces. Hg. The zirconium chunk was then cooled to below the transformation temperature (862°C) and reheated to 1200°C for 8 hr. The ultimate size of the zirconium grains increased with the number of cycles. Rapid or even furnace cooling through the transformation temperature produces a considerable amount of substructure which was intolerable in corrosion experiments as it would be in the study of any crystallographically dependent property. It was found that a high-temperature a-phase anneal for approximately 4 days reduced the substructure below the limits detectable by visual or X-ray means. Crystals so produced were carefully cut from the massive zirconium chunk and oriented by standard back-reflection Laue techniques. The crystals were then mounted in a goniometer head and, by using the three degrees of freedom available, slices on the order of 0.015 to 0.020 in. were cut parallel to any desired crystal plane. These slices were then carefully polished on both sides to produce smooth flat faces, pickled to remove about 0.002 in. per face, annealed for 1/2 hr at '750°C in a vacuum of approximately 10"5 mm Hg, flash pickled, and checked for orientation. The pickling solution was 45-45-10 vol pct HN0,-H20-HF and continuous agitation was provided to eliminate pitting of the slices. Any slice that was not within 2 deg of the desired orientation was discarded, and any evidence of substructure as indicated by the Laue spots was also grounds for discarding the sample. Thin slices were used for the corrosion tests because weight gain per area data could be obtained with only a minimum area exposed to the corrosive media that was not of the desired orientation. The thin single-crystal slices were of irregular shape and as a result the areas were determined by placing a crystal inside an inscribed square of known area, enlarging a picture of this assembly about X5, and tracing both the enlarged square and crystal with a planimeter. The zirconium used to produce these single crystals was crystal-bar grade, a typical analysis of which is given in Table I. An oxygen analysis on prepared crystals gave a concentration of 205 ppm. The hydrogen concentrations are believed to be less than 15 ppm due to the dynamic vacuum anneal given each crystal. Typical nitrogen values for zirconium treated in this manner are about 10 to 20 ppm. RESULTS AND DISCUSSION Single-crystal wafers have been exposed to de-oxygenated, deionized water in static autoclaves.
Citation
APA:
(1964) Institute of Metals Division - Aqueous Corrosion of Zirconium Single CrystalsMLA: Institute of Metals Division - Aqueous Corrosion of Zirconium Single Crystals. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.