Institute of Metals Division - Atomic Arrangements in the C14 Laves Phase Zr (VCo)2

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 643 KB
- Publication Date:
- Jan 1, 1963
Abstract
The distribution of cobalt and vanadium over non-equivalent crystallographic sites in C14-type Zr(VCo), alloys has been investigated. An anomalous X-ray scattering technique developed by Skolnick, Kondo. and lavine7 by which the separation in the scattering factors of two similar atoms can be enhanced was employed. Six alloys spanning the pseudobinary section ZrV1.6Co0.4-ZrVO.6CO1.4 at 10pct steps showed a nonrandom compositionally dependent distribution. Specifically, at high vanadium content cobalt preferentially occupied sites of type (6h) and vanadium, sites of type (2a; at low vanadium content the reverse was observed. In addition to the distribution fraction the structural parameters x and z were obtained. There was no significant deviation of these parameters from those obtained in the ideal C14 structure. Certain suggestions are made to account for the observed nonrandomness in the distribution of atoms on the two types of sites. INTERMETALLIC compounds of formula AB2 iso-morphous with MgCu2, MgZn2, and MgNi2 are known as Laves phases. Because Laves phases exhibit high symmetry and coordination numbers, the highest possible for an AB2-type compound,1 they are among the most frequently observed compounds in nature. In recent years interest has centered about the purely transition metal Laves phases2-' in efforts to understand the function of atomic size and electronic structure in the formation of these compounds. It has been observed that pseudobinary Laves phase systems often show a variation of structure across the phase diagram. Such a system is the ZrV2-ZrCo2 in which the structure varies from cubic MgCu2 to hexagonal MgZn2 to cubic MgCu2.4 Some understanding about the conditions under which the second modification is stable can perhaps be gained by studying the distribution of cobalt and vanadium atoms on lattice sites in the MgZn2 modification of the system ZrV2-ZrCo2. In both the MgZn2 and MgNi2-types there exist nonequivalent positions open to occupancy by the B element, whereas in the MgCu2 prototype all sites are equivalent. Skolnick, Kondo, and La-vine7 have developed an anomalous scattering technique suitable for this type of investigation. Whereas the influence of size on the formation of a Laves phase is well recognized, no substantial evidence has been put forth in support of the size ratio dependence of a particular prototype. Berry and Raynor8 suggested that RA /RB ratio does indeed affect the type of structure that is chosen, MgZn2 compounds tending to cluster about 1.225 while MgCu2 compounds were found at larger deviations from this ratio. Dwight,3 however, from a study of 164 Laves phases does not believe this generalization to be justified. Electronic effects are certain to play a part in the stability of Laves phases in general and in the choice of a structure type in particular. For example, size along would favor the formation of Laves compounds of Ti, Zr, Hf, Ta, or Nb as the A element with nickel or copper as the B element. The absence of such is attributed to an unfavorable electron : atom ratio by Elliott and rostoker.4 Early experiments of Laves and witte9 with pseudobinary and pseudoternary systems of the three prototypes established the dependence of crystal structure upon electron: atom ratios. They observed that the MgCu2 structure dissolved elements of higher valency until the electron: atom ratio of =1.8 was reached; the MgZn2 likewise dissolved elements of lower valency replacing zinc. witte,6 from calculations of the electron : atom volumes of Brillouin Zones, obtained limits of stability for the prototypes MgCu2 and MgZn2. Elliott and Rostoker4 used these limits with considerable success in the all-transition element Laves phases they investigated. According to witte,6 compounds between the electron :atom ratios of 1.80 and 2.32 were of the MgZn2 type; those above and below exhibited the MgCu2-type structure. On the basis of these limits and an assumed valency of zirconium based upon the near tetra-valence of titanium, Elliott and Rostoker obtained valencies for the first transition series elements. For the Laves phases with which this investigation is concerned, ZrV2 and ZrCo2, the authors calculated electron :atom ratios of 2.54 and 1.56, respectively. These ratios are for the MgCu2-type structure and straddle the stability band of the MgZn2 modification. One could, therefore, predict that a pseudobinary system ZrV2-ZrCo2 should pass through the MgZn2 modification in traversing the composition diagram from one end to the other. Implicit in this assumption is a smooth change of the electron: atom ratio from 2'54 to 1.56. MOSS10 states that his finding the low temperature structure of ZrCr2 to be C15 instead of C14 alters greatly Elliott's valency of zirconium and hence the assumed valencies of the other metals. Such a quantitative correlation of structure with electron : atom
Citation
APA:
(1963) Institute of Metals Division - Atomic Arrangements in the C14 Laves Phase Zr (VCo)2MLA: Institute of Metals Division - Atomic Arrangements in the C14 Laves Phase Zr (VCo)2. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.