Institute of Metals Division - Cemented Titanium Carbide

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 667 KB
- Publication Date:
- Jan 1, 1950
Abstract
The increasing need for materials capable of withstanding higher operating temperatures for various applications such as gas turbine blading and other parts, rocket nozzles, and many industrial applications, has brought consideration of cemented carbide compositions. The well known usefulness of cemented carbides as tool materials is attributable to their ability to retain their strength and hardness at much higher temperatures than even complex alloys. However, it has been found that the temperatures encountered in cutting operations do not approach by several hundred degrees1 those involved in the applications mentioned above where the interest is in materials possessing strength and resistance to oxidation at temperatures of 1800°F and above. At these latter temperatures, the tool type compositions which are made up essentially of tungsten carbide are found to oxidize very rapidly and to produce oxidation products of a character which offer no protection to the remaining body. As a further consideration, the density of the tungsten carbide type compositions is high, from about 8.0 to 15.0. The refractory metal carbides as a class are the highest melting materials known as shown by Table 1 which summarizes the available data from the literature for the carbides of the elements which are sufficiently available for consideration for these uses. The density is also included in the table, since as mentioned above it is an important consideration in many of the applications for which the materials would be considered. It has been established that in the tool compositions the mechanism of sintering with cobalt is such as to result in a continuous carbide skeleton and that the properties of the sintered composition are thus essen- tially those of the carbide.2 On the hypothesis that this mechanism holds to a greater or less degree in cementing most of the refractory metal carbides with an auxiliary metal, it appears from Table 1 that titanium carbide compositions would offer possibilities for a high temperature material. Titanium carbide has extensive use for supplementing the properties of tungsten carbide in tool compositions. Although the literature contains several references to compositions containing only titanium carbide with an auxiliary metal,3,4,5,6 it may be inferred from the meager data that such compositions were deficient in strength and were considered to have poor oxidation resistance.7 Kieffer, for instance, reports the transverse rupture strength of a hot pressed TiC composition at 100,000 psi as compared to up to 350,000 psi for WC compositions. The work described herein was undertaken to determine the properties of compositions consisting of titanium carbide and an auxiliary metal and to improve the oxidation resistance of such compositions. It appeared possible that the inclusion of one or more other carbides with titanium carbide might improve the oxidation resistance and also that this might be more desirable than other means from the point of view of maintaining the highest possible softening point. Consideration of the available carbides in Table 1 suggests tantalum and columbium carbides because of their high melting points and general refractoriness. The work on improving oxidation resistance was concentrated on the addition of tantalum carbide or mixtures of tantalum and columbium carbide. The auxiliary metals used included cobalt, nickel and iron. It was also desired to learn the general physical properties of these compositions. Experimental Procedure The compositions used in this study were made by the usual powder metallurgy procedure applicable to cemented tungsten carbide compositions. The powdered carbide or carbides and auxiliary metal were milled together out of contact with air. In some cases cemented tungsten carbide balls and in other instances steel balls were used to eliminate any effect of tungsten carbide contamination. A temporary binder, paraffin, was then included in the mix and slugs or ingots were pressed with care to obtain as uniform pressing as possible. The ingots were presintered and the various shapes of test specimens were formed by machining, making the proper allowance for shrinkage during sintering. Thereafter the shapes were sintered in vacuum at temperatures of from 2800 to 3500°F. Final grinding to size was carried out by diamond wheels under coolant. The titanium carbide used contained a minimum of 19.50 pet total carbon and a total of 0.50 pet metallic impurities as indicated by chemical and spectrographic analysis. It was found by X ray diffraction examination with
Citation
APA:
(1950) Institute of Metals Division - Cemented Titanium CarbideMLA: Institute of Metals Division - Cemented Titanium Carbide. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.