Institute of Metals Division - Cleavage Steps on Zinc Monocrystals: Their Origins and Patterns

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. J. Gilman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
397 KB
Publication Date:
Jan 1, 1956

Abstract

Examination showed that characteristic cleavage step patterns are observed on the cleavage surfaces of undeformed, slipped, bent, twinned, compressed, and indented zinc crystals; and the effect of temperature is discussed. Dimples were seen to produce cleavage steps in a treelike pattern in otherwise undeformed crystals. The steps seem to originate when cracks intersect screw dislocations. IT has been known for a long time that the path of fracture in polycrystals may be discontinuous (see Jaffe, Reed, and Mannl for review). Recently, Kies, Sullivan, and Irwin2 have proposed, and given evidence, that crack propagation is discontinuous within individual crystals as well. Other evidence has been given by Low.' When discontinuous cracks within a crystal join together to make a macrocrack, the lamellae between each set of two cracks are torn somewhere, forming small cliffs. These cliffs appear as lines when the cleavage surface is observed microscopically.4,5 The lines have been called vein, tree, and riverlike markings by various authors, and they have sometimes been mistaken for fissures. The descriptive term cleavage steps is used in this paper. Cleavage steps vary in height over a wide range of values, from molecular dimensionsG to lor. and larger. Kies, Sullivan, and Irwin,2 as well as George,' have shown that the gross cleavage step patterns for plastics, polycrystalline metals, and for mono-crystals are sometimes similar. Thus, they depend mostly on the mechanical variables that prevail during cleavage and are relatively insensitive to the structure of the material. For example, parabolic markings2,7,8 sometimes result when cracks open up ahead of, and not coplanar with, the main crack front. If the advance crack has the same velocity as the main crack, their intersection line is a parabola, otherwise it is a hyperbola or an ellipse. The patterns are strongly affected by differences in crack velocities. This results in chevron patterns which point to the place of origin of the main crack. It is the purpose of this paper to demonstrate the existence of a mechanism of cleavage step formation which is a continuous rather than a discontinuous process. Also, certain characteristic step patterns are described, and the strong effect of temperature is shown. The specimens were zinc monocrystals (grown from 99.999+ pct pure metal). These were cleaved at room temperature and at — 196°C. Results and Discussion Cleavage step patterns are highly variable from point to point on a given specimen, as well as from one specimen to another. Although the patterns shown in the photographs are typical, they have been selected for graphic illustration. Figs. la and lb compare undeformed crystals that were cleaved at —196 °C and room temperature, respectively. Cleavage at room temperature (Fig. lb) resulted in a higher density of high steps (dark black lines) and enhanced the visibility of the fine background markings. Deformation by simple slip caused no marked change in the step patterns until the glide strain reached about 1.0. But, as Fig. lc shows, the density of high cleavage steps was greatly increased by large glide strains. Corrugations lying perpendicular to the slip direction may also be seen in Fig. lc. These are caused by deformation bands. The cleavage resistance of the crystal of Fig. lc was very high compared to undeformed crystals (estimated by the force on a needle required for cleavage). Striking and varied cleavage step patterns were observed on bent crystals. Two characteristic patterns that were observed on crystals bent at 25°C, and cleaved by reverse bending at —196°C, are shown in Figs. 2a and 2b. The first, Fig. 2a, consists of V-shaped lines similar to the parabolas of other materials2,7 Fig. 2b shows a pattern that is the equivalent of Fig. la, consisting of faint background lines with a few higher step markings. Cleavage of bent crystals at room temperature resulted in Figs. 2c and 2d. Now, the cleavage step lines show a strong tendency to follow one of two perpendicular paths. In Fig. 2c (bent once), many of the cleavage step components that lie parallel to the bend axis are assembled into irregular lines. In Fig. 2d (bent twice), the cleavage steps again tend to consist of two perpendicular components, but neither of the components is assembled into lines. Also, the step density is higher.
Citation

APA: J. J. Gilman  (1956)  Institute of Metals Division - Cleavage Steps on Zinc Monocrystals: Their Origins and Patterns

MLA: J. J. Gilman Institute of Metals Division - Cleavage Steps on Zinc Monocrystals: Their Origins and Patterns. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account