Institute of Metals Division - Creep Behavior of Extruded Electrolytic Magnesium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 590 KB
- Publication Date:
- Jan 1, 1954
Abstract
The creep mechanism and kinetics of fine-grained magnesium have been studied over the temperature range 200' to 600°F. As a result of a photographic study of microstructural changes, transient and steady-state creep components have been correlated with slip, subgrain formation, and cyclic deformation at the grain boundaries. THE approach of this research has been the blend of a quantitative study of the creep strain of polycrystalline magnesium as a function of time, stress, and temperature with direct microstructural observations of the operative deformation processes. The validity of the conclusions is dependent on the condition that the microstructural changes seen on the polished surface qualitatively represent those occurring in the bulk of the metal. The work was intended as much to lay a background to a study of highly creep-resistant magnesium alloys as to provide a description of the behavior of the base metal itself. The spectroscopic analysis of the electrolytic magnesium used in this study is as follows: Al, 0.009 pct; Ca, <0.01; Cu, 0.0011; Fe, 0.021; Mn, 0.012; Ni, 0.0004; Pb, 0.0012; Si, <0.001; Sn, <0.001; and Zn, <0.01. The impurity level is approximately that of commercial magnesium alloys. The original ingot was melted under Dow type 310 flux and cast as a 3 in. diam billet. It was extruded into 1 in. flat stock under the conditions: billet preheat 800°F (1 hr), container and die temperature 800°F, speed 3 ft per min, and area reduction ratio 45:1. The extrusion process was chosen in preference to rolling and recrystallization because it allowed easier grain size control from specimen to specimen. The grains of the extruded metal were fairly equi-axial and uniform in the size range of 4 to 6 thousandths of an inch. The preferred orientation of basal planes about the transverse direction was determined by an X-ray diffraction surface reflection method. A beam of filtered copper radiation was directed at an angle of 17" to both the transverse direction and the surface yet perpendicular to the extrusion axis. Analysis of the (002) diffraction arcs in the resulting photographic patterns gave an approximate intensity distribution along the great circle which extends through the center of the basal plane pole figure and to the extrusion axis poles. Successive layers of metal were removed by macro-etching between exposures. The extruded texture is relatively sharp, but the most significant point is the position of the maximum basal plane pole density and its variation with depth below the surface. Fig. 1 shows that this maximum is rotated 15" from the normal at the surface toward the extrusion direction. Such an inclination has been reported for extruded 1 pct Mn and 8 pct A1-0.5 pct Zn alloys.' The inclination decreases until the maximum splits at about 0.025 in. depth into two elements of equal and opposite rotations from the ideal. The double texture persists to as great a depth as was experimentally convenient to examine. It probably continues to the very center of the extrusion. There is no great change in the sharpness of the individual elements of the texture with depth. A plate of metal about 0.015 in. thick at the surface of the extruded stock was produced by etching. A transmission diffraction pattern was made for the purpose of determining any preferred orientation of a direction in the basal planes. Relatively uniform {loo) and {101) rings were produced. There is little tendency for parallelism of a given direction in the plane with the projection of the extrusion axis on it. The creep specimens were machined from 6¼ in. lengths of the extruded stock. Creep was measured on the reduced section, ½x1/8X2¼ in. long. This section was electropolished on one side for the studies of microstructural changes during creep. An orthophosphoric acid-ethyl alcohol electrolyte was used under the conditions recommended by Jacquet.² Hand polishing was used for previous mechanical preparation. Electropolishing was continued until all mechanical twins had been removed. The electro-polished surface was protected from oxidation during creep testing by a thin layer of silicone oil. All micrographs were taken at room temperature on conventional metallographic equipment and after removal of the oil film. The creep tests were performed with machines which have been described in detail by Moore and McDonald." Five testing temperatures, 200°, 300°, 400°, 500°, and 600° ±3°F were used. Difference in temperature between the two ends of the specimen reduced section was 2°F or less. The testing was done at constant load. Strain readings were taken as frequently as necessary to develop usable creep curves. Tensile Creep vs Time, Stress, and Temperature A definition of terms is necessary. Whenever successive sections of a creep strain-time curve show decreasing, constant, and increasing slope with time they will be termed primary, secondary, and tertiary
Citation
APA:
(1954) Institute of Metals Division - Creep Behavior of Extruded Electrolytic MagnesiumMLA: Institute of Metals Division - Creep Behavior of Extruded Electrolytic Magnesium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.