Institute of Metals Division - Deformation Modes of Zirconium at 77°, 575°, and 1075°

The American Institute of Mining, Metallurgical, and Petroleum Engineers
K. E. J. Rapperport C. S. Hartley
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
633 KB
Publication Date:
Jan 1, 1961

Abstract

The only slip system observed in zirconium crystals deformed at 77", 575", and 1075OK was (1010) [1210] with a critical resolved shear stress in tension of 1.0 kg per sq mm at 77°K; 0.2 kg per sq mm at 575 °K; and 0.02 kg per sq mm at 1075 OK. The active twin planes were {1012}, (1121}, (11221, and (11233) with varying temperature dependence. A detailed analysis for the slip direction using Laue spot asterism is appended. NeARLY all metals of the hexagonal close-packed structure exhibit basal slip, i. e.,(0002)<1120>- type slip. This is true of magnesium,&apos; zinc,&apos; cadmium,3 beryllium,4 titanium,= yttrium,6 and rhenium.Many of these such as titanium 5&apos;8-&apos;0beryllium,4&apos;" magnesium, and zinc13&apos;14 display other slip modes even at room temperature, and nearly all have been reported to slip on other systems under particular loading or temperature conditions of testing. As is shown in this paper, basal slip was not found at any of four test temperatures from 77" to 1075°K in hexagonal close-packed zirconium under the simple loading conditions of tension and compression, even though in one case the resolved shear stress on the inactive (0002) <llgO> system was twenty-five times higher than the critical resolved shear stress on the active (1010) [1210] system. This result is consistent with prior studies on the active deformation processes in zirconium deformed at room temperature. &apos;&apos;-I7 SPECIMEN PREPARATION A) Material—The zirconium used in this work was of two types: 1) as-deposited reactor grade crystal-bar, and 2) arc-melted and forged reactor grade crystal-bar. Typical chemical and spectrographic analyses of these materials as received, and after hydrogen removal and crystal growth are given in Ref. 17. Crystals of type 1) above have the letter prefix (A) and those of type 2) have the prefix (B) throughout this paper. B) Crystal Growth— he zirconium was machined into rectangular parallelepipeds about 0.2-in. scl in cross section and 2 in. iong. These were hand polished through 4/0 abrasive paper, electropolished, given a hydrogen removal anneal, and subjected to long-time anneals at 840 °C in vacuo to produce usable crystals.&apos;7 A second technique used to obtain large crystals was to cycle the samples two or three times between 1200" and 840°C, allowing them to remain at the higher temperature for about 4 hr and at the lower temperature for 5 days.17 These techniques yielded some grains which occupied the entire cross section of the bar and were as long as 3/4 in. C) Orientation Determination—After the growth of large crystals by thermal cycling, the samples were repolished with extreme care through 4/0 abrasive paper and electropolished. Metallographic examination after polishing showed the surfaces to be free of visible deformation traces. Standard Laue back-reflection X-ray techniques were used to find the crystallographic orientations of selected large grains with respect to a specimen face and edge. Fig. 1 shows the stereographic projections of the stress axes for the crystals used. The sharpness of the spots on the Laue photographs indicated that the crystals were of good quality. EXPERIMENTAL METHODS Nine crystals were deformed in tension at 77"K, nine in tension and five in compression at 300°K in previous tests,17 fifteen in tension at 575"K, and eleven in tension at 1075°K. All specimens were stressed by load increments. After a predetermined load was applied, the specimen was removed from the loading appratus and metallographically examined for deformation traces. An attempt was made to initially stress each bar so that some crystals slipped a small amount and others not at all. This was done to bracket the critical resolved shear stress. One bar of special orientation (B-11) was repolished and annealed at 1075°K for 1 hr after lower temperature deformation, before final deformation at 1075°K. In the other bars the loading by increments, followed by metallographic examination, was continued until the surface distortion would interfere with analysis, or until fracture. One example of a crystal pulled to fracture is shown in Fig. 2. This photograph shows a crystal (B-14C) which was pulled at 1075°K and failed by slip on two (10i0) planes. The approximate orientation of this crystal is illustrated in the figure. Specimens were deformed at 77°K in liquid nitrogen on a tensile machine using an insulated bucket with an internal hook to accept a clamped specimen.
Citation

APA: K. E. J. Rapperport C. S. Hartley  (1961)  Institute of Metals Division - Deformation Modes of Zirconium at 77°, 575°, and 1075°

MLA: K. E. J. Rapperport C. S. Hartley Institute of Metals Division - Deformation Modes of Zirconium at 77°, 575°, and 1075°. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account