Institute of Metals Division - Densities of Some Low-Melting Cerium Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 2235 KB
- Publication Date:
- Jan 1, 1965
Abstract
Densities of cerium metal and several lour-melting binary cerium alloys were measured over the range 25° to 800°C. A rolumeter, using NaK as working fluid, was used to obtain the data. The cerium, Ce-Co, Ce-Ni, and Ce-Cu alloys all exhibited an increase in density on melting, while a Ce-Mn alloy expanded on melting. FOR the proper design of a nuclear reactor, the change in density of the fuel with temperature must be known. This is especially important in a system utilizing molten fuel, such as LAMPRE (Los Alamos Molten Plutonium Reactor Experiment), since a relatively large change in density usually occurs during the solid-liquid transition. The fuel for LAMPRE is a Pu-2.5 wt pct Fe alloy with a melting temperature of 410°C. However, limitations in reactor design with this fuel have led to consideration of other plutonium-containing alloys for use in future generations of this type of reactor. Several ternary alloys containing plutonium and cerium as two components have satisfactorily low melting points. The system that at the present time appears to be most acceptable is Pu-Ce-Co; it exhibits little change in melting temperature with wide variation in plutonium concentration. Other alloys that have received some consideration contain nickel, copper, and manganese as the third constituent. The proposed fuel alloys are difficult to handle experimentally in the 25" to 800°C temperature range since they oxidize readily, react with many solvents, and contain a poisonous fissionable material. In addition, in this temperature range the alloys pass through the solid-liquid transition. Several techniques are available for measuring the densities and volume coefficients of expansion of solids or liquids. However, the only apparatus that appears suitable for measuring expansion coefficients over this temperature range and through the phase transition is a volumeter. In a volumeter, the indicating medium must be essentially inert to and insoluble in the material being studied. It must also possess a low vapor pressure over the operating temperature range, and its coefficient of expansion must be accurately known. One material that is satisfactory in nearly all of these respects is the alloy Na-78 wt pct K, which melts at -10°C and has a vapor pressure of 860 mm Hg at 800°C. This relatively high vapor pressure at 800°C requires an overpressure of an inert gas to prevent boiling. While a volumeter is capable of determining accurately the volume coefficients of expansion of materials, it cannot be used for absolute density measurements. Therefore, a density determination at a known temperature must be coupled with the volumeter measurements to give all the desired data. The weight-loss technique using immersion in bromobenzene at room temperature proved to be satisfactory. The preliminary work that was done on this experimental program involved developing and calibrating the equipment, and measuring the densities and volume coefficients of expansion of cerium and some low-melting binary cerium alloys. The complications that are caused with the introduction of plutonium into the system were avoided until the equipment was proved to be satisfactory and until experience was gained in its operation. It is this first phase of the experimental work that is described in this report. DESCRIPTION OF EQUIPMENT AND OPERATING PROCEDURE The NaK volumeter is shown schematically in Fig. 1. Basically, the equipment consists of two weld-sealed stainless-steel containers of nearly identical volume. One container holds a tantalum crucible and the specimen being measured; the other contains a tantalum crucible and a tantalum specimen used as a control reference material. To avoid temperature gradients, the bombs are located in a copper block inside the furnace. Stainless-steel capillaries of equal length and volume connect each stainless-steel container to a glass viewing capillary. The stainless-steel containers, stainless-steel capillaries, and a portion of the glass capillaries are filled with NaK (22 wt pct Na-78 wt pct K). The NaK/gas interface in the glass capillary is viewed with a cathetometer which is accurate to *0.5 mm. The cathetometer readings are used to calculate the volume changes of the samples during a run. This volumeter is basically the same as that described by F. Knight in Plutonium 1960. 2 However, changes in equipment design and operating procedure were made to eliminate some major operating difficulties. These changes are summarized below. 1) In filling the manometer with NaK, gas was frequently entrained in the system. Evacuation of the system before filling failed to eliminate the en-
Citation
APA:
(1965) Institute of Metals Division - Densities of Some Low-Melting Cerium AlloysMLA: Institute of Metals Division - Densities of Some Low-Melting Cerium Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.