Institute of Metals Division - Density Anomalies in Binary Aluminum Solid Solutions

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 448 KB
- Publication Date:
- Jan 1, 1962
Abstract
Binary aluminum solid-solution alloys containing various amounts of silver, magnesium, and zinc were prepared by careful directional solidification, and the hydrostatic and X-ray densities were compared. With the exception of the Al(Ag) alloys, the X-ray densities were consistently greater than the hydrostatic measurements, in agreement with earlier observations by Ellwood. In contrast to Ell-wood's interpretation in terms of vacant lattice sites associated with Brillouin zone effects, a tentative explanation based on the existence of solidification microshrinkage was favored. This hypothesis was confirmed by an examination of Al(Zn) alloys prepared by vapor diffusion of zinc into aluminum. The hydrostatic and X-ray densities were now in very close agreement, and it was concluded that the filling of Brillouin zones in aluminum solid-solution alloys does not necessarily result in the formation of defect structures containing an excess of vacant lattice sites. ThE existence of defect structures of the vacancy type in alloys in which the excess vacancies have an electronic rather than a thermal or mechanical, and so forth, origin is well recognized. Examples of incomplete lattices of this type are to be found in the Ni-Al,1-3 Fe-Ni-A1,4 c~-Ni-Al,5 Fe-Cu-Al,= and Co-A17 systems. These defect structures are of a special kind in that the intermediate phases possess an ordered atomic arrangement or superlattice, and in some instances the vacancy concentration may be unusually large, e.g., at 45.25 at. pet Ni in NiA1, approximately 8.8 pet of the lattice sites are unoccupied. Ellwood8-10 has reported similar defect structures in the aluminum solid solution alloys of the Al-Zn and A1-Mg systems and in alloys of the Au-Ni system." In Al(Zn) the (apparent) vacancy concentration rose, somewhat irregularly, to a maximum of about 2 pet vacant sites at 25 at. pet Zn, while in Al(Mg) the (apparent) vacancy concentration increased continuously to 1.7 pet at 15 at. pet Mg. An explanation in terms of Brillouin zone overlap was attempted, although Pearson12 has pointed out the difficulty of reconciling the observations with zone theory. However, the possibility of the effect being caused by the Fermi surface just touching a plane of energy discontinuity inside a prominent Brillouin zone has, in general, been accepted. In fact, Massal-ski13 has interpreted Ellwood's8 observations as confirmation of Leigh's14 theoretically predicted zone overlap occurring at approximately 2.67 electrons per atom. Unfortunately, Massalski was apparently unaware that Ellwood9 had revised his earlier results considerably, and the revised data did not confirm Leigh's analysis. Ellwood's clata were reexamined by the present authors who noted a possible correlation between the percentage defects as a function of alloy composition and the temperature interval of solidification measured from the respective equilibrium diagrams. This suggested an explanation in terms of shrinkage porosity rather than vacant lattice sites, and pointed to the desirability of reexamining appropriate alloy systems using: both Ellwood's method of specimen preparation (casting followed by wrought fabrication) and alternativ'e methods, i.e., diffusion, which might be expected to minimize, or even completely obviate, microporosity. ALLOY PREPARATION 1) Cast Allolys and Aluminum Single Crystals. Al(Ag), Al(Mg;l, and Al(Zn) alloys of various compositions up to 20 at. pet silver, 13.5 at. pet mg, and 30 at. pet Zn were prepared by melting under helium and casting into graphite molds. In the first two systems, the maximum alloying addition was quite close to the limit of solid solubility, but the possibility of transformation to a' during quenching somewhat restricted the suitable Al(Zn) composition range. The alloys were prepared from high-purity aluminum, a lot analysis showing 0.002 wt pet Cu, 0.002 wt pet Fe, and 99.996 wt pet A1 by difference. The silver, magnesium, and zinc were of 99.99+, 99.98+, and 99.998 wt pet respectively. Each composition was analyzed chemically. The as-cast ingots measured 7/16 in. diam and 5 in. length. One in. was removed from the top of the ingot, and the bottom 3 in. was machined to 0.275 in. diam; a point was also machined on the smaller diameter end. The remainder of the original ingot served as a top riser during subsequent remelting and controlled solidification. The machined ingots were now remelted using a Bridgman soft-mold technique to ensure directional solidification and, therefore, a minimum of micro-shrinkage. Alumina powder was used as mold material contained in an alundum thimble, and this crucible was placed in a helium-filled Vycor tube. The assembly was lowered through a suitable temperature gradient at approximately 0.5 in. min-l, and the risered portion of the casting was subsequently removed by sawing.
Citation
APA:
(1962) Institute of Metals Division - Density Anomalies in Binary Aluminum Solid SolutionsMLA: Institute of Metals Division - Density Anomalies in Binary Aluminum Solid Solutions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.