Institute of Metals Division - Determination of Boundary Stresses during the Compression of Cylindrical Powder Compact

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. E. Shank J. Wulff
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
791 KB
Publication Date:
Jan 1, 1950

Abstract

At the present time, the designer of dies for metal powder pressing is handicapped by relative ignorance of stress distribution and frictional effects at the interior surface of the die. Unckell was the first to develop a method for the study of wall friction. He used three Brinell balls on which the die rested during pressing. The total frictional wall force was determined by the size of impression these balls left on a soft metal plate. Since the method does not give radial pressures, or distribution of such pressures, coefficients of friction could not be determined. Although Unckel measured density distribution, he was not able to determine radial or shear stresses. Shaler2 has proposed theoretical expressions for the stress and density distribution within cylindrical compacts during pressing, in accordance with the experimental results of Kamm, Steinberg, and Wulff.3 By application of Siebel's method,4 Kamm et a13 plotted stress trajectories for two compacts. From the stress trajectories they calculated coefficients of friction from point to point along the die wall. As pointed out by Shaler in the discussion of Ref. 3, these values are based on progressive point-to-point calculations on finite size grid squares across the compact. In the region of the die wall such calculated values may therefore have considerable cumulative error. The purpose of the present paper is to develop an experimental method by which the nonhydrostatic pressures and shears acting on the interior wall of a cylindrical die can be measured. Such measurements can then he correlated with existing data to aid in the explanation of the pressing process. The method used is based on the elastic: properties of the thick-walled tube used as the die. The principle of super-position of force systems on an elastic body is assumed to hold. Electric strain gauges were mounted in adjacent positions on the exterior die wall in order to get an exact measurement of the variation of tangential strain over the length of the die during pressing. While in this paper, measurements in terms of only tangential strains are considered, it is well to note that similar calculations may be set up for axial strains. The latter are not preferred, since they tend to be smaller than the tangential strains and therefore permit less sensitive measurements. Discussion in this work is restricted to compacts pressed from both ends, since the elastic deformation of the die is then more amenable to analysis. Before choosing the electric strain gauge method, a more direct line of attack was considered and discarded. The discarded idea was the insertion of a pressure gauge through a hole in the die wall.* The gauge would have been in the form of a small piston. If pressure were exerted against such a gauge, it would move outward along a radius of the die. One disadvantage of the scheme is its inability to measure shears along the die wall. Another more serious disadvantage is the disturbance caused by the device itself. It would serve to change the forces it was designed to measure. No matter how small the movement of the gauge, when pressure is applied a discontinuity would exist in the wall surface at that point. Due to the stress concentration caused by the hole, abnormal deflections of the die wall would occur around the gauge. During pressing, powder would be forced into the resulting depression. The depression would then become larger with increasing compacting pressure. Powder, not being a fluid, is capable of supporting shear. The ease with which it would flow into the die wall depression to further move the piston is an indication, not of the radial pressure at that point, but of the state of shear retarding the movement. Thus the "pressure" gauge is really a criterion of flowability, and of the capability of the powder to support shear. For these reasons, it was decided that the electric strain method, herein employed, was more reliable, if more indirect. The gauges and lead wires, mounted on the external die wall do not in any way affect the behavior of the metal powder or the die during pressing. Theory of the Method THE EFFECT OF RADIAL PRESSURE ON THE DIE WALL Effect of a Single Small Band of Hydrostatic Pressure Consider a die which is a thick-walled cylinder of outer radius R. and inner radius Ri. If over a small finite length L there is a normal pressure P, a tangential strain distribution at the outer wall results. This is shown schematically in Fig 1. The exact shape of the curve may he predicted by an extension of the theory of a semi-infinite beam on an elastic foundation.6 This
Citation

APA: M. E. Shank J. Wulff  (1950)  Institute of Metals Division - Determination of Boundary Stresses during the Compression of Cylindrical Powder Compact

MLA: M. E. Shank J. Wulff Institute of Metals Division - Determination of Boundary Stresses during the Compression of Cylindrical Powder Compact. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account