Institute of Metals Division - Determination of the Self-Diffusion Coefficients of Gold by Autoradiography

The American Institute of Mining, Metallurgical, and Petroleum Engineers
H. C. Gatos A. D. Kurtz
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
282 KB
Publication Date:
Jan 1, 1955

Abstract

WITH the growing interest in the mechanism of self-diffusion of metals, the study of accurate and convenient methods for determining self-diffu-sion coefficients appears highly desirable. It was with this objective in mind that the present investigation was undertaken. Gatos and Azzam1 employed an autoradiographic technique for measuring self-diffusion coefficients of gold. This method involved sectioning of the specimen through the diffusion zone and recording the radioactivity directly on a photographic film. Because of the very short range of the emitted ß rays in gold, the activity recorded on the film was essentially the true surface activity. With proper choice of the sectioning angle, sufficient resolution could be obtained and the entire concentration-distance curve recorded in one measurement. For the boundary conditions of the experiment, where an infinitesimally thin layer of radioactive material diffuses in positive and negative directions into the end faces of a rod of infinite length, the solution of the diffusion equation is C/Cn = 1/v4pDt exp (-x2/4Dt) where C is the concentration of diffusing element (photographic density in this case), C,, is the constant (depending upon amount of radioactive material), x is the diffusion distance, D is the diffusion coefficient, and t is the time. Thus, by plotting the logarithm of the concentration vs the square of the diffusion distance, a straight line results and the slope contains the diffusion coefficient. In this manner, the self-diffusion coefficient of gold can be obtained as a function of temperature. In the present investigation the results reported by Gatos and Azzam1 have been verified, and the autoradiographic technique has been further developed and applied for the determination of the self-diffusion coefficient of gold at a number of temperatures. Furthermore, the energy of activation for the self-diffusion of gold has been conveniently determined. . Experimental Techniques Preparation of Specimens: The inert gold of high purity was received in the form of a rod from which cylinders were cut and machined to a diameter of 0.500 in. The specimens were annealed to a suitably large grain size and the faces were surface ground prior to the deposition of the radioactive layer. The radioactive isotope Au198 was chosen. It was produced in the Brookhaven pile by means of the reaction Au197 + n ? Au108. It decays by ß emission (0.96 mev) to Hg108 with the subsequent emission of a y ray (0.41 mev). 70Au 108 ? 80Hg 108 + -1e°. The half life of the Au108 is 2.7 days so that a strict time schedule had to be maintained in order to secure sufficient activity until the end of the experiments. For this reason, initial activities as high as 10,000 millicuries per gram were used. The gold arrived in the form of foil and was evaporated onto one face of each gold specimen cylinder to a thickness of about 100A. A sandwich-type specimen was formed by welding two such cylinders together. Evaporation of Gold: The gold was evaporated under vacuum from heated tantalum strips which were bent in such a way as to limit the solid angle through which the gold was allowed to vaporize, thus insuring a more efficient utilization of the gold. The specimens rested on flat brass rings which had an inner diameter of 0.475 in. The entire specimen-holding assembly could be manipulated from outside the vacuum system by means of a magnet which attracted a slug of soft iron attached to the assembly. By evaporating inert gold on glass slides under conditions identical to those employed for the radioactive gold, it was found that the thickness of the films was about 100A. Welding: The welding was performed by hot pressing in a stainless steel cylinder. The inside of the cylinder was threaded and fitted for two plugs. The specimens to be welded were placed in the middle of the cylinder and two pressing disks, one at each end, were inserted to avoid shearing stresses as the plugs were tightened. Mica disks were placed between the pressing disks and the specimens to prevent them from welding. The plugs were then tightened with a hand wrench and the entire unit was placed in an argon stream for about an hour to remove the oxygen. The unit was then inserted in the center of an argon atmosphere furnace maintained at about 700°C and left there for about an hour. Because of the difference in the temperature coefficient of expansion of the two metals, as the temperature rose. the pressure on the specimen-rollple increased and a weld resulted Welding was generally satisfactory under the conditions described.
Citation

APA: H. C. Gatos A. D. Kurtz  (1955)  Institute of Metals Division - Determination of the Self-Diffusion Coefficients of Gold by Autoradiography

MLA: H. C. Gatos A. D. Kurtz Institute of Metals Division - Determination of the Self-Diffusion Coefficients of Gold by Autoradiography. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account