Institute of Metals Division - Diffusion of Zinc and Copper in Alpha and Beta Brasses

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. Resnick R. W. Balluffi
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
645 KB
Publication Date:
Jan 1, 1956

Abstract

NUMEROUS investigations of chemical diffusion in a brass have been made and the results are collected in several places.1-3 This work has been mainly concerned with the determination of the chemical diffusivity as a function of composition and temperature. In 1947 Smigelskas and Kirken-dall&apos; showed that zinc and copper diffuse at different rates in face-centered-cubic brass, and since then, a number of efforts have been made to determine the intrinsic diffusivities of zinc and copper in this alloy.1, 5-9 Horne and Mehl8 in particular have recently determined the intrinsic diffusivities as functions of temperature and composition using sandwich-type couples and inert markers. Inman et al." also have determined the intrinsic diffusivities in homogeneous alloys using tracer techniques. When the present work was started, no information of this type was available. Consequently, measurements of the intrinsic diffusivities were made as a function of temperature at a constant composition of 28 atomic pct Zn with vapor-solid diffusion couples where the zinc was diffused into the diffusion couple from the vapor phase. The application of these couples to the study of diffusion in a: brass has been described previously.0,7 The temperature dependence of the intrinsic diffusivities was found to follow the relation D, = A, exp(-Hi/RT) and the values of Hzn, and Hcu, were found to be closely the same. It is emphasized, however, that the chemical dif-fusivity (D = N1D2 + N2D1) is a composite diffusivity and does not necessarily follow this exponential form. It is usually found to do so within experimental error for substitutional alloys because the heats of activation of the intrinsic diffusivities generally are not greatly different.&apos;" Also, at the onset of this work, there was no information available concerning possible unequal diffusion rates of individual components and the existence of a Kirkendall effect in alloys with other than face-centered-cubic structures. Since then, two reports indicating a Kirkendall effect in body-centered-cubic ß brass have appeared. Landergren and Mehl" have published a note describing Kirkendall diffusion experiments with sandwich-type couples. Inman et a1.9 also find a Kirkendall effect in this alloy using the tracer technique. In the present work, several aspects of the Kirkendall effect in ß brass were further investigated using vapor-solid couples. Two different couples were used, one in which the zinc was diffused into the specimen from the vapor phase and the other in which the zinc was diffused out of the specimen into the vapor phase. Briefly, the existence of a Kirkendall effect is confirmed and it is found that Dzn/Dcu = 3 at about the 46 atomic pct composition in this alloy at 600°, 700°, and 800°C. As a result of the unequal diffusion rates of zinc and copper, volume changes occur and subgrain formation is observed in the diffusion zone. In addition, significant porosity is produced by the precipitation of supersaturated vacancies. Diffusion in this alloy is therefore outwardly similar to diffusion in a brass where these effects are also observed, a Brass Experimental Methods—The use of vapor-solid couples in studying diffusion in a brass has been described in previous articles.6,7 The method briefly consists of sealing a copper specimen with Kirkendall markers initially placed on its surface in an evacuated quartz capsule along with a large zinc source of fine a brass chips and then diffusing the zinc into the specimen through the vapor phase. The zinc concentration at the specimen surface rises rapidly enough to a value near that of the a brass source so that the surface concentration may be regarded as constant during diffusion. Under these boundary conditions, values of the chemical diffu-sivity may be obtained by applying the Boltzmann-Matano analysis to the concentration penetration curve, and the intrinsic diffusivities may be obtained from Darken&apos;s5 equations when the velocity of marker movement is known. The diffusion specimens were made from OFHC copper in the form of disks 3.2 cm diam and 0.5 cm thick with faces surface-ground parallel to within +0.001 cm. Markers in the form of fine alumina particles <0.0002 cm diam were placed on the specimen surface. These specimens were then sealed in quartz capsules along with enough a brass chips of a 30.0 atomic pct Zn composition to keep the source concentration from decreasing by more than 0.3 atomic pct Zn as a result of the loss of zinc to the specimen during diffusion. The quartz capsules which were initially evacuated to a pressure of
Citation

APA: R. Resnick R. W. Balluffi  (1956)  Institute of Metals Division - Diffusion of Zinc and Copper in Alpha and Beta Brasses

MLA: R. Resnick R. W. Balluffi Institute of Metals Division - Diffusion of Zinc and Copper in Alpha and Beta Brasses. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account