Institute of Metals Division - Discussion of Effect of Superimposed Static Tension on the Fatigue Process in Copper Subjected to Alternating Torsion

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 172 KB
- Publication Date:
- Jan 1, 1963
Abstract
T. H. Alden (General Electric Research Laboratory)—This paper as well as earlier ones of Dr. Wood represent an important contribution to the experimental description of fatigue fracture. The mechanism of fracture proposed by the authors, however, is not established by this data nor supported by other data existing in the literature. Although taper section metallography provides a rather detailed picture of fatigue crack geometry, photographs so obtained must be interpreted with care. The narrow bands revealed by etching, frequently associated with surface notches, are labeled by the authors "fissures". Measurement shows, taking into account the 20 to 1 taper magnification, that the depth of these structures is at most 2 to 3 times the width. This distinction is important in the conception of a mechanism of crack formation. It is difficult, for example, to imagine a deep, narrow fissure arising from a "ratchet slip" model. A surface notch, on the other hand, may form easily by this mechanism. The notches observed in the present work are the subsurface evidence of the surface slip bands or striations in which fatigue cracks are known to originate.4-6 It is clear that an understanding of the structure of these slip bands is of key importance in understanding the mechanism of fracture. The evidence presented shows that these regions etch preferentially, possibly because they contain a high density of lattice defects, or as the authors state equivalently, because they are "abnormally distorted." However, it is not possible to conclude that the distortion consists of a high density of vacant lattice sites. The fact of a high total shear strain in itself does not assure a predominance of point defects as opposed to other defects, for example, dislocations. Other evidence in the literature which suggests unusual densities of point defects formed by fatigue7-' refers not to the striations or fissures, but to the material between fissures (the "matrix"). If a choice must be made, the preferential etching would seem to be evidence for a high dislocation density, since dislocations are known to encourage chemical attack in copper;g no such effect is known for the case of point defects. A third alternative is that the slip bands are actually cracked, but that near its tip the crack is too narrow to be detected by the authors' metal-lographic technique. In this case the rapid etching can be readily understood in terms of the increased chemical activity of surface atoms. Unless a vacancy mechanism is operative, the motion of dislocations to-and-fro on single slip planes will not lead to crack growth. Point defect or dislocation loop generation are the principal non-reversible effects predicted by this model. In any case, the nonuniform roughening of the surface in a slip band6 requires a flexibility of dislocation motion which is not a part of the to-and-fro fine slip idea. The same is probably true of crack growth by a shear mechanism. Either some dislocations must change their slip planes near the end of the band and return on different planes,'0 or dislocations of opposite sign annihilate." The mechanism by which these processes occur in copper at room temperature or below is that of cross slip. Thus cross slip appears to be essential to fatigue crack growth.6'10"12 The fact that a tensile stress opens the slip bands into broad cracks does not indicate the structure of the bands or the mechanism by which cracks form. The charactersitic concentration of slip into bands during fatigue shows a low resistance to shear strain in these regions. (This fact in itself may be inconsistent with a high concentration of vacancies.) The authors contend also that continuing shear produces an additional mechanical weakening so that the bands fracture easily (are pulled apart) under the influence of the superimposed tensile stress. It is equally possible that the only weakness is a weakness in shear, that the crack propagates by a shear mechanism, and that subsequently the tensile stress pulls the crack apart. Even the direct observation of bands opened by a tensile stress would not be conclusive since, as argued above, they may be fine cracks. The same argument applies to internal cracks, their existence in the presence of a tensile stress not indicating the mechanism of formation. Internal cracks originating in regions of heavy shear have also been seen following tensile deformation of OFHC copper,13 so that this mode of fracture is not unique to combined tensile and fatigue straining. The authors point out in their companion report14 that 90 pct of the cracks formed during pure tor-sional strain were within 8 deg of the normal to the specimen axis. If the tensile stress were an important factor in crack propagation, it is surprising that the cracks cluster about the plane in which the normal stress vanishes. Similarly, a study of zinc single crystals showed that for various orientations the life correlated well with the resolved shear stress on the basal plane,'= and was not dependent on the normal stress across this plane. W. A. Wood and H. M. Bendler (Authors' reply) -Dr. Alden's discussion emphasizes the essential point in the relation of slip band structure to
Citation
APA:
(1963) Institute of Metals Division - Discussion of Effect of Superimposed Static Tension on the Fatigue Process in Copper Subjected to Alternating TorsionMLA: Institute of Metals Division - Discussion of Effect of Superimposed Static Tension on the Fatigue Process in Copper Subjected to Alternating Torsion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.