Institute of Metals Division - Discussion of The Dependence of Yield Stress on Grain Size for Tantalum and a 10 Pct W-90 Pct Ta Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. E. Smallman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
2
File Size:
177 KB
Publication Date:
Jan 1, 1963

Abstract

R. E. Smallman (University of Birmingham, England)—Recently, Tedmon and Ferriss11 have determined the yield stress parameters oi and ky for tantalum by measuring the lower yield stress as a function of grain size 2d and fitting the results to a relationship of the form They report that although ky , which is taken to be a measure of the dislocation locking strength, is small (- 2 to 4 x 106 cgs units) a substantial yield drop is nevertheless observed in a normal tensile test. Niobium gives a similar result,12-14 as pointed out in the original work by Adams et a1.,12 and in order to check this apparent anomaly the yield-stress parameters of electron beam-melted niobium have recently been reanalyzed15 by the Luders strain technique. In this method the strain hardening part of the stress-strain curve is extrapolated to zero plastic strain; the intercept on the preyield portion of the curve is taken to give oi, whilst the difference between oi and the lower yield stress gives kyd-1/2. The results indicate that ky increases with increasing grain size and hence, a plot of vs d-112 yields an apparent ky, which is lower than the true value. A similar effect could account for the small ky found in the relatively pure tantalum used by Tedmon and Ferriss. The variation of ky with grain size shows that dislocations are more strongly locked in coarse-grained specimens than in fine-grained samples. In niobium, this may be attributed to the fact that the dislocation density in the fine-grained material is higher than that found in the coarse-grained samples which are given a sufficiently prolonged anneal to remove any residual substructure and, since the metal contains only a small amount of interstitual impurity, a variation in locking occurs. By contrast, application of both the grain size analysis and the Luders strain method to yield-stress data from commercially pure vanadium containing a large amount of interstitial impurity gives consistent values of oi and ky, with ky independent of grain size and temperature. Electron microscope observations show minor variations in dislocation density from grain size to grain size, but in any case in this material the dislocations are heavily locked with precipitate. On yielding new dislocations are generated and, as a consequence, the importance of any differences in dislocation density between the various specimens of different grain size is considerably reduced. It is perhaps significant that Adams and lannucci,16 working with a grade of tantalum containing a higher interstitial content than that used by Tedmon and Ferriss, prepared the specimens of different grain size by annealing in the temperature range 1500" to 2000° C to minimize any differences in dislocation structure, and found that ky had a value of 1.04 x 107 cgs units, independent of testing temperature. Such behavior is consistent with the dislocations being locked by carbide precipitates so that the generation of free dislocations is an athermal process. The recent work of Gilbert et al.17 also shows that in tantalum there is no significant variation of ky with grain size provided it contains 150 ppm of oxygen. In this case, however, the dislocations are not locked by precipitate and ky is temperature dependent. C. S. Tedmon and D. P. Ferriss (authors' reply)— We would like to thank Dr. Smallman for his interesting comments and discussion to our paper, "The Dependence of Yield Stress on Grain Size for Tantalum and a 10 pct W-90 pct Ta Alloy".18 It was suggested that perhaps the relatively small values obtained by us for ky of tantalum could be attributed to the same cause that accounts for the apparently small values of ky that result when it is determined by the Luders Strain technique. Since our values were obtained by plotting the lower yield stress vs the reciprocal of the square root of the grain size, it is not clear how this could be the case. The values of ky in this experiment have been calculated, using the Luders strain technique. With this method, values for ky on the order of 2 x 105 to 5 x lo6 cgs units were obtained. In spite of this rather large variation, the magnitudes are still small, and there appeared to be no good correlation between ky and the grain size or the yield stress, probably because of the difficulty in accurately extrapolating the work-hardening portion of the curve back to zero plastic strain. As was shown in the original data,18 there was little work hardening in any of the curves, at any temperature. In his discussion, Dr. Smallman also points out how ky has been observed to increase with increasing grain size, when determined by the Luders strain technique. There are at least two possible explanations for this. In the first case, if it is assumed that the bulk of the interstitial impurities are concentrated at the grain boundaries, then, of course, the available grain boundary area would decrease with increasing grain size, thus presenting less area for the interstitials, which would then presumably increase the concentration within the grains, thereby increasing the locking of the dislocations. In the second case, the increase in ky with increasing grain size would be attributed to the nature of the grain boundary itself. One of the several ways of deriving the Hall-Petch equation19 is based on the stress concentration arising from a pile-up of dislocations at the boundary. The ability of the stress concentration to unlock a source in a neighboring grain would depend on the strength of the grain boundary. As is well-known, the nature and struc-
Citation

APA: R. E. Smallman  (1963)  Institute of Metals Division - Discussion of The Dependence of Yield Stress on Grain Size for Tantalum and a 10 Pct W-90 Pct Ta Alloy

MLA: R. E. Smallman Institute of Metals Division - Discussion of The Dependence of Yield Stress on Grain Size for Tantalum and a 10 Pct W-90 Pct Ta Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account