Institute of Metals Division - Dislocation Collision and the Yield Point of Iron (With Discussion)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 602 KB
- Publication Date:
- Jan 1, 1953
Abstract
A DISLOCATION mechanism has been described by Cottrell' by which metals can yield locally, I. form Liiders bands, giving rise to a characteristic stress-strain curve with a sharp yield point and appreciable strain at constant or decreasing stress. It is undoubtedly the best mechanism that has been suggested to date." In its present development, however, the dislocation mechanism provides a more satisfying explanation for the sharp yield point than for the extensive localized flow occurring at the lower yield stress. The primary objective in this paper is to extend the dislocation mechanism to account for localized cataclysmic flow by a dislocation collision process and to give experimental evidence to support such a process. Only the yielding of iron containing carbon -will be discussed, although other metal-solute systems are known to behave similarly. Cottrell Mechanism In brief, Cottrell explains the yield point in the following way: The dislocations in iron which must propagate to produce slip usually lie at the center of local concentrations of carbon atoms, since segregation about these dislocatlons relieves some of the local stress resulting from them. A dislocation surrounded by a "cloud" of carbon atoms is thus anchored, and a higher stress is required to set it in motion than to move a free dislocation. Considering all available dislocatlons to be anchored in this fashion, the iron exhibits a yield point when the first dialocations break free and move through the lattice causing slip. This first breaking away of a dislocation enables other dislocations to break loose by "interaction" and the process becomes a cataclysm producing local deformation or Luders bands. The yield point in the stress-strain diagram for iron is absent in freshly deformed material, but returns gradually with time; the phenomenon is one aspect of what is called strain aging. The rate at which the yield point returns following straining depends on the temperature of aging. According to Cottrell the rate of return of the yield point in strained iron is limited by the rate of diffusion of carbon at the aging temperature, the mechanism is onr: of reforming the solute atmospheres around carbon-free dislocations that had stopped moving coincident with the removal of stress. If the specimen is retested immediately after straining and unloading, carbon will not have had time to diffuse to, and re-anchor, dislocations and the yield point will not occur. The carbon diffusion limitation for the rate of strain aging apparently applies if the criterion for strain aging is either the change in hardness" or the change in electrical resistance" of the strained speci- men with aging time. The possibility exists, however, that the yield point actually returns to strained iron at some rate other than that deduced from hardness or electrical resistance data. Therefore, as a preliminary experiment, the rate of yield point return in a rimmed sheet steel strained 6 pct in tension was measured at 27°, 77°, and 100°C. A plot of yield-point elongation for each of these temperatures against aging time appears in Fig. 1. The aging process is described by curves which rise to a plateau value of elongation that seems independent of temperature, but at a rate that depends on temperature. Very long times lead to a further rise in the yield-point elongation above the plateau value. However, if the later increase in yield-point elongation is ignored and the log of the time to reach half the plateau value of elongation is plotted against 1/T, a straight line results for which an activation energy of about 25 kcal pel- mol may be assigned. Within the accuracy of this sort of experiment this is approximately the activation energy for the diffusion of carbon in iron (20 kcal per mol), and the carbon diffusion limitation suggested for the yield-point return on strain aging is valid. The Cottrell mechanism thus explains in a qualitative manner the occurrence of a yield point in iron and its return with strain aging. It fails, however, to explain some of the other experimental observations that have been made of the yielding behavior of iron. For example, it is known that the yield point in iron becomes less pronounced with increasing grain size. Annealed single crystals of iron have very small yield-point elongations .if indeed they have any,' compared to a polycrystalline steel. If the only requirement for a yield point is that the dislocations in the lattice of the annealed. material be anchored by carbon atoms, the difference in the behavior of single crystals and polycrystals is not explained. That a dislocation mechanism may be entirely consistent with little or no yield point in an annealed single crystal will become apparent later when dislocation interaction is discussed. Strain aging produces a definite yield point even in single crystals. This accentuation of the yield-point phenomenon in single crystals after strain
Citation
APA:
(1953) Institute of Metals Division - Dislocation Collision and the Yield Point of Iron (With Discussion)MLA: Institute of Metals Division - Dislocation Collision and the Yield Point of Iron (With Discussion). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.