Institute of Metals Division - Easy Glide and Grain Boundary Effects in Polycrystalline Aluminum

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1298 KB
- Publication Date:
- Jan 1, 1962
Abstract
Tensile data for coarse grained aluminum Polycrystals suggest that the "grain size" effect is not due to dislocations piled up at grain boundaries but rather is primarily a relative size effect due to surface crystals being weaker and less confined. STUDIES directed at interpreting hardening of poly-crystalline metals normally identify their strain hardening properties with those in some particular type of single crystal.1"4 The recent recognition in face centered-cubic metals of a nearly linear stage with rapid hardening occuring at comparable rates for both polycrystals and single crystals, suggested that the same process or processes determine both cases and hence that there exists some justification for the use of single crystals to understand polycrystals. Further evidence for the above view may be found by an approach initiated by Chalmers:5 By using bicrystals of controlled orientation it is possible to begin to assemble a polycrystal and also to study grain boundary effects in detail. In this way it has been found that a single grain boundary affects easy glide but not the subsequent stage II hardening.6 This result suggests that a sensitive way to observe grain boundary effects in polycrystals would be to vary grain size and measure easy glide. As will be seen, easy glide is only possible for coarse-grained samples, and hence the results will serve to fill in the gap in measurements between single crystals and bicrystals on one hand and fine-grained polycrystals on the other. One problem inherent in comparing single crystals with polycrystals is the uncertainty as to what slip systems are acting in a polycrystal. To compare the two types of samples, rates of shear hardeninn---L. on the acting -planes are needed. and these may be computed only if it is known what particular systems are active. The acting systems were examined for a coarse-grained polycrystal and it will be shown that the systems supplying the preponderance of slip can be determined with little ambiguity. EXPERIMENTAL PROCEDURE Twelve samples of aluminum were prepared by chill casting into a heated graphite mold, followed by annealing at 635° ± 5°C for 24 hr with an 8-hr fur- nace cool, and finally either etching7 or electropol-ishing.' The samples, with a 7 to 10 cm length between grips and 4.4 by 6.6 mm in cross section, were deformed at a strain rate of about 3 10 -3 . per min in a tensile device which has been described elsewhere.5 The composition was reported by Alcoa as 99.992 pct Al, 0.004 pct Zn, 0.002 pct Cu, 0.001 pct Fe, and 0.001 pct Si; nine samples were deformed while immersed in liquid helium and three in air at room temperature. The stress-strain curve for one of the samples (P-1) deformed at 4.2 "K has been reported previ~usl~.~ This sample was selected for determination of active slip systems. Eighteen of the crystals were examined by optical microscopy to determine the angles of slip line traces and by X-ray back reflection to determine orientation. By this means the slip planes were determined and the resolved shear stress factors for possible slip systems could be computed. Finally each sample was sectioned so that after etching, the number of crystals could be counted for each of ten newly exposed surfaces. The average of these ten values will be termed n, the number of crystals per cross section. Values of 11, varied from 1.9 (nearly bamboo structure) to 12.7. Sketches of typical cross sections appear in Fig. 1. RESULTS AND DISCUSSION: SLIP SYSTEMS 1) Determination of Acting Slip Planes—The stress axis orientation and operative slip planes in eighteen crystals of sample P-1, as determined by slip line traces and crystal orientation, are summarized in Fig. 2. For one of the crystals two planes had a common trace. so that the traces alone did not distinguish which plane or planes were slipping. However it was found that the stress resolving factor for the primary system was 0.386, .while that for the most stressed system in the other plane (indicated bv the dotted arrow) is 0.138. It will be assumed tgerefore that only the primary plane acted. Since the orientations were determined after extending the samples 4 pct, the stress axes may be rotated from their original value by as much as 2 deg in some cases. It is interesting to note that in five crystals only one slip plane acted, in eight two acted, and in five three planes were observed—an average of two slip
Citation
APA:
(1962) Institute of Metals Division - Easy Glide and Grain Boundary Effects in Polycrystalline AluminumMLA: Institute of Metals Division - Easy Glide and Grain Boundary Effects in Polycrystalline Aluminum. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.