Institute of Metals Division - Effect of Copper on the Corrosion of High-Purity Aluminum in Hydrochloric Acid

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. Metzger G. R. Ramagopal O. P. Arora
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
2191 KB
Publication Date:
Jan 1, 1962

Abstract

Single-phase aluminum containing 0.0001 to 0.06 pct Cu was studied in strong acid, mainly through observations of hydrogen evolution. The strong influence of copper was exerted almost entirely through the imposition after a certain delay time of an auto-catalytic localized-corrosiott reaction. Additions of cupric ion to the acid produced lower accelerations. The significance of the quantity and distribution of copper was discussed, and the implications for intergranular corrosion and neutral chloride pitting were indicated. AN investigation of intergranular corrosion in single-phase high purity aluminum exposed to hydrochloric acid indicated the copper content of the metal to have an influence on corrosion at lower levels than previously suspected.&apos; The work reported here was a closer examination of the action of copper but dealt with general corrosion to gain the advantage of having a continuous measure of corrosion through the volume of hydrogen evolved, the reduction of hydrogen ion to hydrogen gas being the principal or only cathode reaction in strong hydrochloric acid. Previous work on the hydrochloric acid corrosion of aluminum was sometimes insufficiently structure-conscious and the need for care in evaluating it arises from the low solubility of the iron impurity,&apos; and of some alloying elements, and the known or possible presence in many of the compositions studied of second phases leading to greatly increased corrosion rates.3 These increases are attributed to the presence of low hydrogen-overvoltage cathodes provided by the second phase.3&apos;4 For the present single-phase work, a few studies which used high-purity base material and small copper additions5-&apos; provide the essential information most unambiguously. The corrosion rate was shown to be increased markedly by the introduction into the acid of small quantities of the ions of copper (and of certain other metals) which cement on the aluminum and provide cathodes of low overvoltage.5 When there was sufficient copper in the aluminum, the same result was produced during the course of corrosion leading to a rate which increased with time as the reaction was stimulated by one of its products (autocatalytic reaction). In 2N (7pct) HC1, an accelerating rate was observed at 0.1 pct Cu but not at 0.01 pct.5,7 The present work dealt with corrosion rate and morphology and their correlation with the quantity and distribution of copper catalyst for copper contents from 0.0001 to 0.06 pct. PROCEDURE A lot of high-purity aluminum containing 0.0021 pct Cu, 0.001 pct Fe and 0.003 pct Si (Alloy A) was alloyed with copper to yield aluminum containing 0.014 pct Cu (B) and 0.06 pct Cu (C). Later it was found necessary to include the lower copper Alloy K which contained 0.0001 pct Cu, 0.0004 pct Fe and 0.0004 pct Si. The upper limit for any other element can be confidently estimated as 0.0005 pct. No element other than copper appears to be present in quantities sufficient to have an effect on general corrosion as great as the observed effect of the copper in A, B, and C. The only other heavy metal detected by spectrographic examination was silver (< 0.0001 pct). The acid was made up from a selected lot of 37 1/2 pct CP hydrochloric acid containing 0.1 ppm heavy metals (mainly Pb), 0.05 ppm Fe, and < 0.008 ppm As and from water distilled from 1 megohm-cm demineralized water and believed to have contained negligible quantities of heavy metals influencing corrosion. Acid strength was adjusted to within 0.05 pct HCl of the stated value by using precision specific gravity measurements. Test blanks 10 by 41 mm were sheared from 1.65-mm cold-rolled sheet. Edges were finished by filing. The blanks were annealed in air at 645°C for 24 hr in alundum boats and rapidly water quenched. The anneal is thought to have produced a substantially homogeneous solid solution—for iron, copper, or silicon, for example, the annealing temperature was 200°C or more above the solvus-and the quench is considered to have preserved the high-temperature structure except for the condensation of lattice vacancies into dislocation loops.&apos; The 0.06 pct Cu alloy did not appear unstable in respect to slow precipitation reactions at room temperature since two pairs of tests failed to show significant differences between specimens heat treated 3 1/2 years earlier and specimens heat treated 1 or 2 days before.
Citation

APA: M. Metzger G. R. Ramagopal O. P. Arora  (1962)  Institute of Metals Division - Effect of Copper on the Corrosion of High-Purity Aluminum in Hydrochloric Acid

MLA: M. Metzger G. R. Ramagopal O. P. Arora Institute of Metals Division - Effect of Copper on the Corrosion of High-Purity Aluminum in Hydrochloric Acid. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account