Institute of Metals Division - Effect of Initial Orientation on the Deformation Texture and Tensile and Torsional Properties of Copper and Aluminum Wires

The American Institute of Mining, Metallurgical, and Petroleum Engineers
K. S. Sree Harsha B. D. Cullity
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
330 KB
Publication Date:
Jan 1, 1962

Abstract

When a copper or aluminum single crystal is swaged into wire, the resulting deformation texture depends on the original orientation of the crystal. The<100> and <111>orientations me essentially stable, while <110> is unstable. The greater the <100> content of the deformation texture, the stronger the wire is in torsion. the greater the<111>content, the stvonger it is in tenszotz. The preferred orientation (texture) of fcc wires, either after deformation or recrystallization, is usually a double fiber texture in which some grains have <100> parallel to the wire axis and others have <111>. The relative amounts of these two texture components, as reported by different investigators for the same metal, vary considerably. Previous work in this laboratory&apos; has shown that the starting texture of a wire, i.e., the texture which it has before deformation, can have a decided influence on the texture produced by deformation. In particular, it was found that the deformation texture of copper wire is essentially a single <100> texture, if the wire before deformation contains only a <100> component. This is true even when the deformation is carried to more than 98 pct reduction in area. This paper reports on further studies of the role played by the starting texture. Copper and aluminum single crystals of various orientations have been cold swaged into wire, and quantitative measurements of the resulting deformation textures have been made. The tensile and torsional properties of the deformed wires have also been measured, and the relation between these properties has been correlated with the texture of the wire. These measurements were made in order to demonstrate that a cold-worked wire can be made relatively strong in torsion and weak in tension, or vice versa, by proper selection of the texture before deformation. MATERIALS The copper was of the tough-pitch variety, containing, by weight, 99.962 pct Cu, 0.003 pct Fe, 0.025 pct 0, and 0.0021 pct Si. The aluminum contained more than 99.99 pct .&apos;41; the only reported impurities were 0.001 pct Fe, 0.001 pct Si, and 0.003 pct Zn, by weight. Large single crystals of these metals were grown by the Bridgman method in graphite crucibles and a helium atmospliere. Cylindrical specimens of predetermined orientation, about 1.5 in. long and 0.36 in. in diameter, were machined from the as-grown crystals and then etched to 0.25 in. to remove the effects of machining. Their orientations were checked by back-reflection Laue photographs, and they were then swaged to a diameter of 0.050 in. (96 pct reduction in area). 111 order to study the "inside texture" of the deformed wires, they were etched, after swaging, to a diameter of 0.040 in. before the texture measurements were made. TEXTURE MEASUREMENTS The fiber texture which exists in wire or rod can be represented by a curve showing the relation between the pole density I, for some selected crystal-lographic plane, and the angle $ between the pole of that plane and the wire axis (fiber axis). Such a curve will show maxima at particular values of , and these values disclose the texture components which are present. The relative amounts of these components can be determined2&apos;3 from the areas under the maxima on a curve of I sin F vs F. It is seldom necesszlry to measure I over the whole range of F from 0 to 90 deg, since the existence of maxima in the low-F relgion can be inferred from measurements confined to the high-F region. The X-ray measurements were made with a General Electric XRD-5 diffractometer and filtered copper radiation, according to one or the other of the following procedures: 1) A method developed in this laboratory,4 involving diffraction from a single piece of wire. 2) A modification of the Field and Merchant method.5 This method was originally devised for the examination of sheet specimens, but it can easily be adapted to the measurement of fiber texture. Three or four short lengths of wire are held in grooves machined in the flat face of a special lucite specimen holder. The axes of the wires are parallel to the plane defined by the incident and diffracted X-ray beams, and the holder to which the wires are attached can be rotated step-wise about the diffractometer axis for measurements at various angles 9.
Citation

APA: K. S. Sree Harsha B. D. Cullity  (1962)  Institute of Metals Division - Effect of Initial Orientation on the Deformation Texture and Tensile and Torsional Properties of Copper and Aluminum Wires

MLA: K. S. Sree Harsha B. D. Cullity Institute of Metals Division - Effect of Initial Orientation on the Deformation Texture and Tensile and Torsional Properties of Copper and Aluminum Wires. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account