Institute of Metals Division - Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200°F (650°C)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. F. Tisinai J. K. Stanley C. H. Samans
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
874 KB
Publication Date:
Jan 1, 1955

Abstract

The addition of nitrogen (0.10 to 0.20 pct) to Fe-Cr-Ni alloys of simulated commercial purity results in a real displacement of the u phase boundaries to higher chromium contents. The effect is small for the (Y + s)? boundary, but is pronounced for the (y + a +s)/(y + a) boundary. Although there is an indication of an exceptionally large shift of the n boundaries to higher chromium contents, especially in steels with nitrogen over 0.2 pct, the major portion of this apparent shift results from the fact that carbide and nitride precipitation cause "chromium impoverishment" of the matrices. The effect of combined additions of nitrogen and silicon to the Fe-Cr-Ni phase diagram is demonstrated also. Nitrogen can nullify the effect of about 1 pct Si in shifting the (y + o)/? phase boundary to lower values of chromium at all nickel levels from 8 to 20 pct. NItrogen can nullify this U-forming effect of about 2 pct Si at the 8 pct Ni level, but not at the 20 pct Ni level. The alloys studied were in both the cast and the wrought conditions. There are indications that the u phase forms more slowly in the cast alloys than in the wrought alloys if both are in the completely austenitic state. The presence of 6 ferrite in the cast alloys accelerates the formation of U. Cold working increases the rate of o formation in both cast and wrought alloys. THE major improvement in Fe-Cr-Ni austenitic alloys in recent years has been in the addition or removal of minor alloying elements to facilitate better control of corrosion resistance, sensitization, and heat resistance. One shortcoming of the austenitic Fe-Cr-Ni alloys, which never has been completely circumvented, is their propensity toward u formation. In the AISI-type 310 (25 pct Cr-20 pct Ni) and type 309 (25 pct Cr-12 pct Ni) steels, sufficient amounts of u phase can form, if service or treatment is in a suitable temperature range, to cause severe embrittlement. Also, there is a growing conviction that this phase may be contributory to some unexpected decreases in the corrosion resistance of certain of the 18 pct Cr-8 pct Ni-type steels. The present paper discusses the effect of nitrogen additions on the location of the (r+u)/d and the (y+a+u)/(y+a) phase boundaries in the ternary Fe-Cr-Ni system, for cast and wrought alloys of simulated commercial purity, and in similar alloys containing up to about 2.5 pct Si. The objective is to define compositional limits for alloys which will not be susceptible to u formation when used near 1200°F (650°C). An excellent review of the early studies of the u phase in the Fe-Cr-Ni system has been compiled by Foley.1 Rees, Burns, and Cook2 have determined a high purity phase diagram for the ternary system, whereas Nicholson, Samans, and Shortsleeve3 are- stricted themselves to a portion of the simulated commercial-purity phase diagram. Both groups of investigators show almost an identical position for the commercially significant (y+u)/y phase boundary. Further comparison of the work of the two groups indicates that, below the 8 pct Ni level, the commercial alloys have a decidedly greater propensity toward u formation than the high purity alloys. The two groups of workers agreed that both the AISI-type 310 (25 pct Cr-20 pct Ni) and the type 309 (25 pct Cr-12 pct Ni) steels are well within the (y+~) region and that the 18 pct Cr-8 pct Ni-type alloys straddle the U-forming phase boundaries. Nicholson et al.3 showed, in addition, that these boundaries shift toward lower chromium contents if greater than nominal amounts of silicon or molybdenum are added. The effect of nitrogen on the location of the s phase boundaries in the Fe-Cr-Ni system has not been known with any certainty. In 1942, an approach to this problem was made by Krainer and Leoville-Nowak,' but at that time they apparently were unaware of the slow rate of s formation in strain-free samples and aged their samples for insufficient times, e.g., 100 hr at 650°C (1200°F) and 800°C (1470°F). For this reason, it would be expected that their (y+ u) /y boundary would be shifted toward lower chromium contents (restricted ?-field) when equilibrium conditions were approximated more closely. Procedure for Studying the Alloys The alloys used were prepared in the following way: Heats of 200 lb each were melted in an induction furnace. A 5 lb portion of each heat was poured into a ladle containing an aluminum slug for de-
Citation

APA: G. F. Tisinai J. K. Stanley C. H. Samans  (1955)  Institute of Metals Division - Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200°F (650°C)

MLA: G. F. Tisinai J. K. Stanley C. H. Samans Institute of Metals Division - Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200°F (650°C). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account