Institute of Metals Division - Effect of Temperature on the Lattice Parameters of Magnesium Alloys - Discussion

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 254 KB
- Publication Date:
- Jan 1, 1953
Abstract
Niels Engel (University of Alabama, University, Ala.)— In this paper it was pointed out that the electron-gas and energy-band theory accounts for the fact that the lattice parameters exhibit a sudden change when the electron concentration (number of bonding electrons per atom) exceeds a certain number around two. This statement is said to support and prove the electron-gas theory. But this theory is not able to account for a series of experimental data. Also several expectations, deduced from this theory, are not found to exist. In Figs. 6 and 7 the energy bands of the second and third periods are given as they must be assumed in order to account for the electrical properties of the elements in these periods. In Figs. 6 and 7 the electron-gas and energy-band theory is compared with the electron-oscillator hypothesis in accounting for the properties of the elements in the second and third periods. Fig. 6 shows the second period, The energy-bands are overlapping and separated to be in agreement with the electrical conductivity of the elements. The oscillator hypothesis explains conductivity due to electron vacancies. In graphite there is a closed s-shell in every other atom and two vacancies in the others. Conductivity is therefore only maintained by migration of s-electrons in graphite. In boron there are no s-electrons. The diatomic molecules of nitrogen and oxygen and the paramagnetism of oxygen can be accounted for by a similar behavior as the s-electrons of the bonding electrons. But this explanation will deviate too much for the purpose of this discussion. Fig. 7 shows the third period. In the energy-band picture about two s-electrons are assumed in magnesium and aluminum, but only one s-electron is assumed in silicon. The diamond lattice is assumed to be controlled by a sp3 hybrid. However the electron distribution develops ideally according to the oscillator hypothesis. Only sodium, magnesium, and aluminum exhibit electron vacancies and conductivity. To account for the insulator properties in Si, P, and S in the third period it must be assumed that the four last added p-electrons must be taken up in bands containing only one electron per band.' (Compare the electron band picture in Hume-Rothery.' Hume-Rothery does not consider the insulator properties of the nonmetals.) In the second period already the first p-electron must have entered a single electron band. Based on the energy-band picture in Figs. 6 and 7, the following questions must be asked: 1—Is it consistent with the energy-band idea that electrons of the same kind (p-electrons) can be divided into separated bands? 2—Is it consistent with the energy band idea that single electron bands can exist? 3—Why are the first two p-electrons (in boron and diamond) separated into two single electron bands in the second period, but overlapping in the third period (aluminum)? 4—Why are s-electrons and d-electrons taken up in continuous overlapping bands, while p-electrons are divided into single electron bands? 5—Why do the peaks and valleys (y and w and further x and z) of the energy band below four electrons per atom not show up in the electrical conductivity of alloys? For example consider the Li-Mg system or the alloys between Mg and three electron metals where the mentioned discontinuity in the lattice parameter is found. 6—Why does the beginning of the p-electron band (x) not show up in the lattice constants similar to the filling up of the s-electron band (z) ? In magnesium alloys the electron-gas theory postulates the first Brillouin zone to be filled at about two electrons per atom. This is claimed to explain the sudden change in lattice spacing and c/a values of several magnesium alloys when the electron concentration exceeds a few percentage points over two electrans per atom. This was emphasized in the paper by Busk. If the electron-gas energy-band theory is correct a sudden change in electrical conductivity and possibly other properties .should be expected when the same electron-concentration or temperature is exceeded. A sudden change in lattice spacing or other properties should also be expected when the filling degree is such that p-electrons are introduced into the p-band, for example at x in Figs. 6 and 7. Such phenomena are at found by experiment. and If the number of electrons should vary with the energy level depending on the average number of bonding electrons per atom, the electrical conductivity should be expected to vary in accordance with the energy band layout (Figs. 6 and 7) caused by different numbers of conducting electrons at different filling up degrees. Nothing indicating such a behavior is observed. In addition to these discrepancies between the electron-gas and energy-band theory and measured data, the theory violates the principles developed along with the Bohr theory of atomic structure. According to these principles a filled shell is saturated and therefore unable to form bonds. Therefore two S-electrons per atom should form a closed or saturated shell, which has been pointed out as accounting for the inability of helium to form bonds. Beryllium, magnesium, or calcium atoms with two s-electrons should be expected to form inert atoms with properties almost like the helium atoms. Several other inconsistencies and disagreements with measured data of the energy-band theory can be mentioned. Some of these are discussed with reference to other papers. 8 Because the electron-gas and energy-band theory seems to fail on several points, I have developed another theory which can account for all the phenomena the electron-gas theory is able to account for. This new theory is further able to account for things which are impossible to explain by the electron-gas theory at the present state.
Citation
APA:
(1953) Institute of Metals Division - Effect of Temperature on the Lattice Parameters of Magnesium Alloys - DiscussionMLA: Institute of Metals Division - Effect of Temperature on the Lattice Parameters of Magnesium Alloys - Discussion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.