Institute of Metals Division - Effects of Grain Boundaries in Tensile Deformation at Low Temperatures

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. L. Fleischer W. A. Backofen
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
576 KB
Publication Date:
Jan 1, 1961

Abstract

Single crystal, bicrystal, and polycrystal tensile tests of aluminum at 4.2°K, 77°K, and 300°K have been used to examine the role of grain boundaries in the deformation process. Results indicate that a grain boundary may affect the extent and slope of easy glide. The stage II hardening rate, on the other hand, is independent of the presence or absence of grain boundaries. This conclusion allows the size of the region of multiple slip caused by an incompatible grain boundary to be determined. For the size of bicyystal sample used in this study, multiple slip occurs in about half of the cross section. PREVIOUS studies of the stress-strain characteristics of bicrystals of face-centered-cubic metals have been limited to aluminuml-5 at room temperature. Recent results, however, indicate that the stress-strain curves of single crystals of such metals may be separated into at least three stages6 in which different deformation processes are occurring7 provided testing is done at sufficiently low temperatures.' Since for aluminum a well-defined stage II develops only below room temperature, previous studies have not been able to relate effects of grain boundaries to all of the three stages of deformation. It is therefore to be expected that low-temperature deformation of aluminum single crystals and bicrystals should clarify the effects of grain boundaries on the different processes of deformation. EXPERIMENTAL PROCEDURE Single crystals and bicrystals were grown from the melt by the standard techniqueg with aluminum reported by Alcoa to be 99.993 pct pure. Ridges in the boat were used to guide the grain boundary during growth, assuring that the boundary would bisect the sample.10 The rate of furnace motion during growth was 1.0 cm per hr. During growth zone purification resulted, as evidenced by the ability of the first material to freeze to recrystallize at room temperature following severe deformation. Samples were approximately 4.4 X 6.6 mm in cross section and 103.5 mm in length between grips. Samples were annealed at 635" i 5°C for 40 hr and furnace cooled over a 7-hr period. They were then electropolished in a solution of 5 parts methanol to 1 part perchloric acid at a current density of 15 amp per sq dm for about 30 min at temperatures below 0°C. Tensile testing was performed at 295" (room temperature), 77" (sample in liquid nitrogen), and 4.2"K (sample in liquid helium) on the hard-type machine indicated schematically in Fig. 1. The machine con- sists basically of a tube surrounding a rod; one end of the sample is attached to each member, and the rod is pulled up the tube to extend the sample. The rod is rigidly mounted and is moved vertically by a system described by asinski." The pulling force is measured continuously by an electrical strain gage load cell, and the relative displacement of the tube and rod is also recorded continuously by a soft cantilever beam with electrical strain gages. Maximum stress and strain sensitivities were ±2g per sq mm and * 3-10-5. In all tests the strain rate was approximately 5.10-5 per sec. The thin wires in the tensile apparatus introduce softness, which may be corrected for, however, by measuring load vs displacement with the sample replaced by an elastic member. For loads greater than 15 kg the spring constant is 1.875.106 g per cm. The flexible wires also served to reduce substantially the large shearing forces which may arise in the case of grips having horizontal rigidity.'' As in any gripping system, however, bending moments will arise in the course of deformation by single slip. Engineering stress, s = (load)/(original cross-sectional area), and strain, E = (increase in length)/ (original length), are used for stress-strain curves unless otherwise indicated. Tables list resolved shear stress, T=mo and shear strain ? = dm, where m is the usual Schmid resolved shear stress factor for the primary slip system at the start of deformation. The first group of samples to be described forms an isoaxial set, all of the crystals making up the single crystals or bicrystals having the same tensile axis, the orientation of which is indicated by the cross in Fig. 2. For this orientation the primary slip plane and slip direction make angles of 45 deg with the tensile axis and the Schmid factor m has its maximum possible value of 0.5. Rotations about the tensile axis are indexed by means of an angle 0 between the small-area surface of the samples and the projection of the primary slip direction onto the cross section, as defined in Fig. 3. In single crystals, values of 0 were 0 and 90 deg, while in bicrystals 0 values were (0 deg, 180 deg), (90 deg, 270 deg), and (0 deg, 90 deg) as indicated in Fig. 4.
Citation

APA: R. L. Fleischer W. A. Backofen  (1961)  Institute of Metals Division - Effects of Grain Boundaries in Tensile Deformation at Low Temperatures

MLA: R. L. Fleischer W. A. Backofen Institute of Metals Division - Effects of Grain Boundaries in Tensile Deformation at Low Temperatures. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account