Institute of Metals Division - Extension of the Gamma Loop in the Iron-Silicon System by High Pressure

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Martin Schatz Larry Kaufman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
1282 KB
Publication Date:
Jan 1, 1964

Abstract

The effect of pressure on the extension of the ? loop in the FeSi system has been determined by means of metallogvaphic studies and hardness measurements performed on a series of high-purity Fe-Si alloys containing 7.5, 11.0, and 13.9 at. pct Si, respectively. These mensurements, performed at 42 kbar and temperatures up to 1200oC, indicate that the ? loop is expanded to about 10 at. pct Si at 42 kbar as opposed to a maximum extension of 4 at. pct Si at 1 atm. Comparison of the experimental results with thermodynamic predictions of the pressure shifts yields satisfnctory results. DURING the past few years, several studies have been performed in our laboratory1-' in order to determine the effect of high pressure on phase equilibrium in pure iron and iron-base alloys. The purpose of these studies has been to elucidate the effects of high pressure experimentally and to compare the observed results with predicted pressure effects derived on the basis of known thermody-namic and volumetric data at 1 atm. These studies have included work on pure iron2,5,7 as well as Fe-Ni,1,5 Fe-cr,l,5 and Fe-c4-6 alloys. In addition, Tanner and Kulin3 have reported results of pressure studies on two Fe-Si alloys containing 2.0 and 6.25 at. pct Si. At the time of this latter study, no detailed information was available concerning the difference in volume between the a (bcc) and ? (fcc) phases in the Fe-Si system as a function of silicon content. In order to compare their observations with calculated pressure shifts, Tanner and Kulin were forced to assume that silicon had no effect on the difference in volume between a and ? iron. The resulting discrepancy between their calculation of the a/? phase boundary at 42 kbar and the observed results led them to the conclusion that silicon additions probably decrease the difference in volume between a and ? iron. Recently: Cockett and Davis8,9 have reported de- tailed studies of the lattice parameters of a series of Fe-Si alloys at temperatures ranging from 20" to 1150°C. These measurements, performed on alloys in the bcc and fcc range, show that silicon does indeed decrease the difference in volume between a and ? iron. By correcting the calculations of Tanner and Kulin in line with the observed effect of silicon they were able to show improved agreement between computed and observed pressure shifts.' The present measurements were undertaken to provide additional corroboration of this effect, by extending the range of composition, in addition to exploring a situation where large extensions of a ? loop could result in impingement of the ? field with an ordered bcc phase (based on Feo.75Sio.25). I) EXPERIMENTAL PROCEDURES AND RESULTS The alloys investigated were obtained from Dr. F. Kayser of M.I.T. They were prepared at the Ford Scientific Laboratory by vacuum melting electrolytic iron and high-purity silicon. The melts were poured under an argon atmosphere into hot-topped steel molds. Subsequently the ingots were hot-worked down to 1/2-in.-diam rods. Three alloys containing 7.5, 11.0, and 13.9 pct Si were studied. Carbon, regarded as the principal impurity, analyzed at, or below, 0.001 wt pct for all of the alloys. Prior to pressure-temperature treatment, the rod was annealed for 24 hr in vacuum at 1000°C, water-quenched, and subsequently machined into 0.100-in.-diam by 0.100-in.-long specimens. Subsequent to machining, the specimens were again annealed and then examined metallographically. They were found to exhibit a clear coarse-grained ferrite similar to Figs. 10 and 110 of Ref. 1 and Fig. 2 of Ref. 3. Subsequently, specimens of each alloy were equilibrated at 42 kbar at various temperatures in supported piston apparatus.1,3,4,6 Three specimens, one of each alloy, were wrapped in platinum and exposed simultaneously. The pressure-temperature cycle consisted of increasing the pressure from ambient to 42 kbar at 25oC, heating rapidly to the desired temperature, holding for 15 min, and quenching to 100°C, followed by slower cooling to 25°C and pressure release. The temperature was measured with a Pt/Pt-13 pct Rh thermocouple which was not corrected for pressure effects. Subsequently, specimens were examined metallographically and by
Citation

APA: Martin Schatz Larry Kaufman  (1964)  Institute of Metals Division - Extension of the Gamma Loop in the Iron-Silicon System by High Pressure

MLA: Martin Schatz Larry Kaufman Institute of Metals Division - Extension of the Gamma Loop in the Iron-Silicon System by High Pressure. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account