Institute of Metals Division - Grain Growth Rates and Orientation Relationships In the Recrystallization of Aluminum Single Crystals (Discussion, p. 1413)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. D. Graham R. W. Cahn
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1743 KB
Publication Date:
Jan 1, 1957

Abstract

Two predictions of the oriented growth theory of recrystallization textures have been tested by measuring the orientation dependence of the rate of growth of a single grain into a strained single crystal of aluminum, and determining the orientations of artificially and spontaneously nucleated grains growing preferentially into strained aluminum single crystals. Growth rates are found to be insensitive to orientation, except that new grains with orientations similar to the matrix or to a twin of the matrix have very low mobilities. Similarly, new grains growing preferentially into a strained crystal have random orientations, except that orientations near that of the matrix or its twins are avoided. The predictions of oriented growth theory are thus not confirmed. BASICALLY, the oriented growth theory of re-crystallization textures1 rests on the assumption that the rate of growth of a recrystallizing grain depends strongly on the orientation of the growing grain relative to the strained matrix into which it grows. In particular, the theory holds that in face-centered-cubic metals the orientation which corresponds to maximum growth rate is one in which the growing grain and the matrix are related by a rotation about a common <111> direction. The amount of rotation, as derived from several kinds of experiments,2-1 has been assigned various values, generally in the range between 20" and 40". (A <111> rotation of 60" is a twin relationship.) The conclusion that boundary migration rates depend strongly on orientation is based almost entirely on indirect evidence; there have been very few direct measurements of boundary migration rates as a function of orientation.* " The present investigation was undertaken to provide such measurements, to help make possible a decision between the oriented growth and oriented nilcleation theories of recrystal-lization textures. The basic experimental program consisted of measuring the rate of growth of a single recrystal-lizing grain consuming a strained single crystal, with the orientations of both grains preselected so that the effect of orientation on growth rate could be determined. A prerequisite for such an experiment is a strained single crystal which will support the growth of a new grain but which will not spontaneously nucleate new grains on heating. That is, the crystal must support the growth of a grain nucleated artificially, but contain no recrystalliza-tion nuclei which will become active at the testing temperature. Beck was apparently the first to note that such a condition could exist," and to make use of the condition for am experiment of the type described here.&apos; The present work was actually suggested, however, by a report of Tiedema". " that an aluminum single crystal strip, oriented with a (111) plane in the plane of the strip and a < 112> direction parallel to the tensile axis, would not recrystallize after 20 pet extension even when heated almost to the melting point, provided that the strip was heavily etched before being heated. This result could not be duplicated in the present work. In fact, it was found that any crystal which deformed in multiple slip (<100>, <112> and <111> orientations) underwent spontaneous nucleation after 15 pet extension, even if etched. However, crystals which deformed in single slip, and which did not develop heavy deformation bands, could be extended 15 pet without showing spontaneous nucleation at temperatures up to 600°C. Crystals oriented within about 10o of <110> which developed heavy deformation bands could be extended 10 pet without showing spontaneous nucleation. In all cases a heavy etch was required to prevent nucleation. Etching was necessary because of the presence of an oxide layer on the crystal surface at the time of straining, which leads to preferential nucleation at the surface.&apos;&apos; Grain Growth Rates Experimental Procedure and Results—Aluminum strips of 99.6 pet purity (principal impurities 0.19 pet Fe and 0.12 pet Si), 1 mm by 1 cm in cross section, were grown into single crystals of controlled orientation by the strain-anneal method of Fuji-wara.&apos;"&apos; " A sharp temperature gradient was maintained in the strips during growth by lowering them into a salt bath controlled at 650°C. Crystal orientations were determined by the etch-pit method of Barrett and Levenson" to an accuracy of ±2O. The crystals were extended by 10 or 15 pet in a simple hand operated tensile machine. Crystal orientations were rechecked after extension, and were found to be in agreement with the orientations predicted by the formula of Schmid and Boas." After extension, the grip ends of the single crystal specimen were cut off with a jeweller&apos;s saw, and the crystal heavily etched (at least 20 pet wt loss) in hot 10 pet Na or KOH solution. A region of severe local deformation was then introduced at one corner of the strip, usually by cutting off the corner with shears. Heating this end of the strip caused a large number of new grains to nucleate at the sheared edge. One of these grains grew to occupy the full width of the strip. The appearance of the strip at
Citation

APA: C. D. Graham R. W. Cahn  (1957)  Institute of Metals Division - Grain Growth Rates and Orientation Relationships In the Recrystallization of Aluminum Single Crystals (Discussion, p. 1413)

MLA: C. D. Graham R. W. Cahn Institute of Metals Division - Grain Growth Rates and Orientation Relationships In the Recrystallization of Aluminum Single Crystals (Discussion, p. 1413). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1957.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account