Institute of Metals Division - Growth of (110) [001] - Oriented Grains in High-Purity Silicon Iron - A Unique Form of Secondary Recrystallization

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 574 KB
- Publication Date:
- Jan 1, 1961
Abstract
Secondary recrystallization to the (110) [001] texture in high-purity silicon iron occurs if low-oxygen material is annealed in a nonoxidizing atmosphere. Any departure from these conditions results in a growth of (100) oriented grains. The nature of the matrix and secondary recrystallization structures and textures and the nature of grain boundary interactions during growth show that the low gas-metal interfacial energy of the (110) surfaces provides the driving force for growth of these grains. A type of grain growth, characterized by a driving force which derives from energy differences of {hkl} surfaces at the gas-metal interface, has been treated in recent papers.'-7 Secondary recrystallization to the cube text!:: in high-purity silicon iron provides one example. The present paper also deals with a surface energy driving force but the texture that results by secondary recrystallization is not the cube texture; it is a texture in which the (110) plane is in the plane of rolling and the [001] direction is in the direction of rolling. The phenomenon described in this paper is different from the impurity (dispersed phase)-controlled secondary recrystallization process in which the (110) [001] oriented grains grow under the action of grain boundary driving forces.8-12 It is also different from tertiary recrystallization,2 which also produces the (110) [001] texture in high-purity silicon iron, since the matrix textures and grain sizes are different. Finally, it is unlike any other form of secondary recrystallization reported in the literature. The possibility of obtaining the (110) [001] texture in high-purity silicon iron became clear in a study of the effect of impurity atoms on the energy relationships of (100) and (110) surfaces. In this study Walter and Dunn6 observed the migration of (100)/(110) boundaries, i.e., boundaries between two grains, one of which has a (100) plane and the other a (110) plane, respectively, parallel to the plane of the sheet specimen. At 1200°C the (100)/(110) boundaries advanced into (100) grains in a vacuum anneal, then reversed their direction and migrated into (110) grains in a subsequent anneal in impure argon. Finally, the direction of migration reversed once again with (110) grains growing into (100) grains in a second vacuum anneal. These results were explained in terms of a change in concentration of oxygen atoms at the gas-metal interface during the anneals. Thus, oxygen atoms were added to the surface during the anneals in impure argon to the point where ?100, the specific surface energy of the (100) oriented grains, was lower than ?110, the surface energy of (110) oriented grains. In vacuum, however, the oxygen concentration at the surface was lowered to the point where ?110 < ?100. Concerning the possibility of secondary recrystallization in high-purity silicon iron with a low initial oxygen concentration, the observed effect of adsorbed oxygen atoms has indicated6 that a good vacuum anneal would favor the rapid growth of matrix grains with the (110) plane in the plane of the sheet much more than grains in the (100) orientation. The growth of only (110) oriented grains of course would depend upon y110 being less than ?hkl, where hkl refers to any plane different from (110). The present paper is concerned with the application of the above ideas to secondary recrystallization to the (110) [001] texture in high-purity silicon iron. The matrix and secondary recrystallization textures and structures are defined and discussed. Observations of growth of nuclei for secondary recrystallization and of boundary interactions are included to provide direct information on the surface energy relationships between (110) and other (hkl) surfaces. EXPERIMENTAL PROCEDURE As before, 2,4-6 high-purity iron and silicon were melted and cast in vacuum to provide an alloy containing 3 pct Si with less than 0.005 wt pct impurities. The oxygen content of the ingot was lower than in previous ingots, being approximately 3 ppm (by weight). The carbon content of this ingot may have been slightly higher than was found for previous ingots. The same rolling and annealing schedule used previously2 was followed in this study to obtain samples 0.012 in. (0.3 mm) thick. These samples were electropolished prior to annealing. After rolling and polishing, the oxygen content of the material was approximately 6 ppm; material used in the previous studies contained about twice this amount of oxygen.
Citation
APA:
(1961) Institute of Metals Division - Growth of (110) [001] - Oriented Grains in High-Purity Silicon Iron - A Unique Form of Secondary RecrystallizationMLA: Institute of Metals Division - Growth of (110) [001] - Oriented Grains in High-Purity Silicon Iron - A Unique Form of Secondary Recrystallization. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.