Institute of Metals Division - Growth of High-Purity Copper Crystals (TN)

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 2
- File Size:
- 195 KB
- Publication Date:
- Jan 1, 1964
Abstract
DURING the investigation of the electrical transport properties of copper, it became necessary to prepare large single crystals of the highest obtainable purity. In an effort to meet these demands, single crystals of copper have been grown by the conventional pulling technique—as has been used for the growth of germanium and silicon crystals.' Low-temperature resistance measurements made on these crystals show that, as far as their electrical properties are concerned, they are generally of significantly higher purity than the original high-purity material. The use of these pure single crystals with very high resistance ratios has made possible the acquisition of detailed information regarding the electron energy band structure of copper2-' and has stimulated widespread effort on Fermi surface studies of a number of other pure metals. It is the purpose of this note to describe our method of preparing very pure copper crystals by the Czochralski technique. Precautions were taken to prevent contamination of the melt from the crystal growing apparatus. A new fused silica growing chamber was used to prevent possible contamination from previous groqths of other materials such as germanium, silicon, and so forth. A new high-purity graphite crucible was used to contain the melt. This crucible was baked out in a hydrogen atmosphere at -1200°C for an hour, prior to its use in crystal growth. Commercial tank helium, containing uncontrolled traces of oxygen, was used as the protective atmosphere. A trace of oxygen in the atmosphere appears to be necessary for obtaining high-purity copper single crystals. A 3/8-in-diam polycrystalline copper rod of the same purity as the melt was used as a seed. The copper rod was allowed to come in contact with the melt while rotating at 57 rpm. When an equilibrium was observed between the melt and the seed (that is, the seed neither grew nor melted), the seed was pulled away from the melt at a rate of 0.5 mils per sec. As the seed was raised, the melt temperature was slowly increased, so that the grown material diminished in diameter with increasing length. When this portion of the grown crystal was -1 in. long and the diameter reduced to less than 1/8 in., the melt was slowly cooled and the crystal was allowed to increase to - 1-1/4 in. diam as it was grown. By reducing the diameter of the crystal in this manner, the number of crystals at the liquid-solid interface was decreased until only one crystal remained. Fig. 1 shows a typical pulled copper single crystal. The purity of the starting material and the crystals was determined by the resistance ratio method: where the ratio is taken as R273ok/R4.2ok. The starting material, obtained from American Smelting and Refining Co., was the purest copper available. Most of the pulled copper crystals had much higher resistance ratios than the starting material. The highest ratio obtained to data is 8000. Table I is an example of the data obtained from some of the copper crystals. Note that Crystal No. 126 had a lower resistance ratio than its starting material and this might be due to carbon in the melt. The melt of this crystal was heated 250" to 300°C above the melting point of copper. At this temperature it was observed that copper dissolved appreciable amounts of carbon. The possible presence of carbon at the interface between the liquid and the crystal will result in reducing conditions and negate the slight oxidizing condition required for high purity as discussed below. The possible explanations of the improvement in the copper purity compared to the starting material are: improvement in crystal perfection, segregation, and oxidation of impurities. Of these, the latter seems to be most probable. A study of the etch pits in the pulled crystals showed them to have between 107 and 108 pits per sq cm. The etch procedure used was developed by Love11 and Wernick.10 The resistivity of the purest copper crystal grown was 2 x 10-10 ohm-cm at 4.2oK; from the work of H. G. vanBuren,11 the resistivity due to the dislocations would be approximately 10-l3 ohm-cm, which indicates that. the dislocations in the copper crystals would contribute relatively little to the resistivity of the crystals at this purity level. Segregation does not seem likely as the reason for purification of the material, since the resistivity of the first-to-freeze and the last-to-freeze portions are approximately the same, as was observed on Crystal No. 124. On most of the crystals that were examined, the entire melt was grown into a single crystal. If the
Citation
APA:
(1964) Institute of Metals Division - Growth of High-Purity Copper Crystals (TN)MLA: Institute of Metals Division - Growth of High-Purity Copper Crystals (TN). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1964.