Institute of Metals Division - Influence of Composition on the Stress-corrosion Cracking of Some Copper-base Alloys

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. H. Thompson A. W. Tracy
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
848 KB
Publication Date:
Jan 1, 1950

Abstract

Season-cracking is a type of failure of brass that results from the simultaneous effect of stress and certain corrodants. The object of this paper is to present data that will aid in a more complete understanding of the mechanism of season-cracking and related phenomena. Results presented show that certain high copper alloys are susceptible to season-cracking or stress-corrosion cracking, and possible explanations are discussed. Starting at least as far back as 1906, many papers have been devoted to this subject but the symposium1 held in Philadelphia in 1944 is the richest source of information. In order to study season-cracking, several of the many variables were held constant so as to learn the effects of others. Season-cracking is generally understood to refer to the corrosion cracking of brass having internal stresses;²,³ it is a special case of the general stress-corrosion cracking. Inasmuch as applied stresses are more readily produced and controlled, they were used exclusively in this research and the resulting phenomenon must he called stress-corrosion cracking.²,³ Only constant tensile stresses were used. The agents believed to be most frequently responsible for season-cracking are ammonia. amines and compounds containing then]. Both moisture and oxygen also appear to he necessary. Therefore, an atmosphere containing ammonia, water-vapor and air was selected for these tests. Briefly, the work consisted of exposing sheet metal specimens, having a reduced section ¼ by 0.050 in., of copper-base alloys to the effect of static tensile stresses between 5,000 and 20,000 psi and simultaneous contact with a. continuously renewed atmosphere containing 80 pct air, 16 pct ammonia and 4 pct water vapor at 35°C. The gas mixture and the speci- mens were maintained above the dew-point. The time-to-failure in minutes was the primary measure of results. In order to limit the experiment to finite time, it was considered that a specimen which had neither failed nor undergone microscopically detectable cracking in 40,000 min. (4 weeks) while under a stress of 10,000 psi or more could be considered immune to cracking. This is merely a convenient limit and is not to be considered proof of immunity. Supplementary tests in the absence of stress using weight loss or microscopical appearance as measures of attack were made. Apparatus The apparatus used in this research is shown in Fig 1. To facilitate the description it may conveniently be divided into six parts: stress-producing units, test chamber, gas train, electrical controls, timers and gas analysis device. A stress-producing unit is shown in an exploded view at the left in Fig 2. At the right is an assembled unit with a specimen in place in the lower portion; it is this part that remains in the ammonia atmosphere during a test. The upper part contains a spring, a central threaded rod, a large nut and necessary washers, pins, and so forth. Stress is produced in the specimen by screwing down the top nut against the spring, thus putting a tensile load on the central rod and so on the specimen. The wrench that turns the nut by extending through the upper cap, is seen at the upper right of the figure. The magnitude of the load is gauged by measuring from the pin that extends through the side of the tube, to a fixed point on the large flange. Measurement is made with a vernier beam caliper, shown at the right of the figure. The necessary spring compression to give a desired stress is calculated from the calibration curve of the spring and the dimensions of the specimen. The test chamber, center Fig 1, consists of a thermally insulated steel box 32 in. long by 10 in. high by 7 in. wide. A horizontal baffle reaching nearly to each end divides the chamber equally. Below this baffle are inlets for air and ammonia, a heating coil and a fan. Thus the gases are warmed and mixed in the lower level and flow past the specimens in the upper level. A thermo-regulator and thermometer project into the upper space. The top is pierced by 12 ports flanked by 3/8 in. threaded studs. A test starts when a port is opened and a unit containing a stressed specimen is thrust through it and bolted down against a neoprene gasket. The test chamber is held at 35°C. The gas train, right rear Fig 1, carries ammonia and air continuously to the test chamber. Tank ammonia passes through two reducing valves, a needle valve, a flow meter and into the test chamber. The air from either the plant compressor or a small laboratory compressor passes through wool towers and flow controls to the flow-meter. It then bubbles through water at 34°C and through a heated line to the test chamber. Electrical controls, left rear, Fig 1, provide rectifiers and mercury relays for the test-chamber and humidifier-heating-control circuits and outlets for
Citation

APA: D. H. Thompson A. W. Tracy  (1950)  Institute of Metals Division - Influence of Composition on the Stress-corrosion Cracking of Some Copper-base Alloys

MLA: D. H. Thompson A. W. Tracy Institute of Metals Division - Influence of Composition on the Stress-corrosion Cracking of Some Copper-base Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account