Institute of Metals Division - Influence of Constraints During Rolling on the Textures of 3 Pct Silicon-Iron Crystals Initially (001)[100]

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1798 KB
- Publication Date:
- Jan 1, 1960
Abstract
Crystals with an (001) [loo] initial orientation of an iron-base alloy containing 3 pct Si were cold rolled with and without the use of constraints. A major difference in the rolling and annealing textures was observed between crystals rolled with and without constraints. These data show that the contribution of constraints at grain boundaries in a poly crystalline sheet should be considered in applying textural data on single crystals to grains in an aggregate. SILICON-iron alloys with a cube texture have been recently developed and their magnetic characteristics reported.1-4 Of interest in the development of this texture were the textural changes of single crystals accompanying rolling and annealing and the influence of constraints at grain boundaries in an aggregate on the behavior of individual grains. The present study was primarily concerned with the effect of constraints during rolling on the textures of 3 pct Si-Fe crystals initially (001)[100]. Barrett and Levenson5 were among the first to observe an influence of constraints at grain boundaries on the textural changes of individual grains during deformation. They tested Taylor's6 theory of plastic deformation of face-centered-cubic metals in which deformation textures were predicted. About one-third of the grains in poly crystalline aluminum did not rotate as predicted. Grains of the same initial orientation were observed to rotate in different directions under the influence of applied stress and anisotropic flow of neighboring grains. Recently, the various inhomogeneities of flow of crystals in an aggregate have been studied7'8 and reviewed.9-11 Barrett and Levenson" rolled (001) [loo] iron single crystals inserted in close-fitting holes in copper to limit lateral flow and to simulate rolling of grains in an aggregate. Deformation bands were formed after a 90 pct reduction in thickness, and the cold-rolling texture contained two components described by rotating the (001)[100] about 35 deg in both directions around the normal of the rolling plane. No annealing textures were reported. Chen and Maddin13 rolled molybdenum single crystals initially (001) [loo]. The crystals were mounted between two hardened silicon-iron plates and 96 pct reduced in thickness by rolling at a low rate of reduction, about 0.0001 in. per pass. The deformation texture had the mean orientation of (001) [loo], and the azimuthal spread included orientations described by rotating (001) [loo] about 35 deg in both directions about the pole of the rolling plane. The presence of deformation bands were not reported by Chen and Maddin or detected in subsequent work of Ujiiye and Maddin.14 The ideal orientation of the annealing texture was (001) [loo]. Recently, Walter and Hibbard 15 reported on the textures of 3 pct Si-Fe alloy crystals initially near (001) [loo]. Each crystal was in an aggregate cut from a columnar ingot. After 66 pct reduction by rolling, the texture consisted of two symmetrical components which had the orientations described by rotating (001) [loo] about 30 deg in both directions about the pole of the rolling plane. Annealing texture was near (001) [loo]. In the above work, the textures of body-centered-cubic crystals were studied after rolling under the influence of constraints. The deformation textures varied from (001) [loo] to near the (001) [110] type and appeared sensitive to the manner in which the crystals were rolled. No textural data were available on the effect of rolling (001) [loo] crystals with and without constraints. The purpose of the present work was to evaluate the influence of constraints during rolling on the textures of 3 pct Si-Fe crystals initially (001) [loo]. Rolling and annealing textures were studied for a) crystals rolled with no constraints at different rates of reduction, and b) crystals rolled with constraints imposed by neighboring grains and by plates between which a crystal was "sandwiched". PROCEDURES AND EXPERIMENTAL TECHNIQUES Data are presented on four crystals which are representative of several crystals studied. The orientation of each crystal prior to rolling was (001) [loo] as determined by the Laue X-ray back-reflection method," i.e., each crystal had an (001) within 3 deg of the rolling plane and [100] within 3 deg of the rolling direction. These crystals were obtained from two iron-base alloys containing 3 pct Si by weight which were prepared by vacuum melting electrolytic iron and a commercial grade of silicon. Crystals 1, 2, and S-1 were cut from a large single crystal grown from the melt of one alloy by the Bridgman technique17 in an apparatus described by
Citation
APA:
(1960) Institute of Metals Division - Influence of Constraints During Rolling on the Textures of 3 Pct Silicon-Iron Crystals Initially (001)[100]MLA: Institute of Metals Division - Influence of Constraints During Rolling on the Textures of 3 Pct Silicon-Iron Crystals Initially (001)[100]. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.