Institute of Metals Division - Influence of Temperature on the Stress-strain-energy Relationship for Copper and Nickel-copper Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. J. McAdam
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
14
File Size:
365 KB
Publication Date:
Jan 1, 1950

Abstract

In a series of papers the author and associates have discussed the influence of temperature on the tensile properties of metals.11-18 These papers present much information about the influence of temperature and the stress system on the conventional indices of mechanical properties, with special attention to the fracture stress. A recent study of the data, however, has revealed much additional information about the influence of temperature on the fundamental factors involved in the flow of metals. The present paper presents results of this study. Attention will be confined almost entirely to results derived from tension tests of unnotched cylindrical specimens at strain rates a little slower than those used in ordinary tension tests. According to a concept first presented by Ludwik and elaborated in recent papers by others,8,9,22,23 the mechanical state of a metal depends on the total plastic strain, but not on the temperature during straining, provided that the only structural changes are those essential to plastic deformation. In the summer of 1948, however, the author made the previously mentioned study of results of a general investigation by the author and associates and reached the conclusion that the mechanical state depends not only on the total strain, but also on the temperature during the straining. A number of diagrams were then prepared. These conclusions were presented without diagrams in a discussion last October of a paper by Dorn, Goldberg and Tietz.2 The metals used in the investigation on which this paper is based were Monel and oxygen-free copper. The Monel was supplied by the International Nickel Co. through the courtesy of Dr. W. A. Mudge. The copper was supplied by the Scomet Engineering Co. through the courtesy of Dr. Sidney Rolle. The data to be presented are based on results of tests at temperatures ranging between 165 and — 188°C. Description of the apparatus and methods of test are given in previous papers.1011'1"2 The present paper is the first part of the general discussion of the influence to temperature on the stress-strain-energy relationship for metals. The next paper will deal with metals that are subject to structural changes other than those induced solely by plastic deformation. Influence of Temperature and Plastic Strain on the Flow Stress of Monel and Copper For a study of the influence of temperature on the stress-strain relationship, flow-stress curves obtained with annealed metals at various temperatures will be compared with curves obtained with the same metals after cold drawing or cold rolling at room temperature. Diagrams thus obtained with Monel and copper are shown in Fig 1 to 8. Fig 1 to 7 show the variation of the flow stress with temperature and plastic strain; Fig 8 is a diagram of a different type, derived from Fig 4 to 7. In Fig 1 to 7 strain is expressed in terms of A0/A, in which A0, and A represent the initial and current areas of cross-section. Since values of Ao/A are represented on a logarithmic scale, abscissas are proportional to true strains; moreover, the true strains representing prior plastic deformation and those representing subsequent strain during a tension test are directly additive. Fig 1 shows flow-stress curves obtained with annealed Monel. Five of the curves are based on results of tension tests. Between yield and the maximum load, the flow was under longitudinal tensile stress; between the maximum load and fracture, the local contraction induced transverse radial tensile stress. The portions of curves designated F, therefore, represent flow with increasing radial stress ratio, the ratio of the transverse stress S3 to the longitudinal stress Si. Curve Fo is based on the ultimate stresses of specimens taken from bars that had been cold drawn various amounts.17 Since the tensile stress at the maximum load is unidirectional, curve Fo represents the course that a flow-stress curve would take if the stress during an entire tension test could be kept unidirectional. The flow-stress curve F obtained at room temperature (Fig 1) has been established accurately by numerous measurements of the diameter of the specimen during the extension from yield to fracture.17 At the time of the experiments, however, no apparatus was available for measuring the diameter during tension tests at low temperatures. Nevertheless, curves have been established to represent with sufficient accuracy the flow at low temperatures. Each flow-stress curve must be tangent to a curve U, which starts at a point representing the ultimate stress of annealed metal. Since the ultimate stress is based on the area of
Citation

APA: D. J. McAdam  (1950)  Institute of Metals Division - Influence of Temperature on the Stress-strain-energy Relationship for Copper and Nickel-copper Alloy

MLA: D. J. McAdam Institute of Metals Division - Influence of Temperature on the Stress-strain-energy Relationship for Copper and Nickel-copper Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account