Institute of Metals Division - Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary Systems

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 470 KB
- Publication Date:
- Jan 1, 1953
Abstract
IN a previous publication1 1200°C isothermal phase diagram sections were given for the Cr-CO-Ni, Cr-Co-Fe, Cr-Co-Mo, and Cr-Ni-Mo ternary systems, in which the a phase formed narrow, elongated solid solution fields. The present investigation is concerned with the 1200°C isothermal sections of the Co-Ni-Mo, Co-Fe-Mo, and Ni-Fe-Mo ternary systems. A prominent feature of these systems is the presence of narrow, elongated µ phase fields. The crystal structure of the phase designated as µ both here and in the previous publication1 was determined by Arnfelt and Westgren.2 For the (CO, W)µ phase, named by them Co,W, (and also frequently designated as a), these authors found that the crystal system is hexagonal-rhombohedra1 and the space group is D53d — R3,. Westgren and Mag-neli3 later found that isomorphous phases exist in the Fe-W and the Fe-Mo systems (these phases are often referred to as < and E, respectively). Henglein and Kohsok4 stated that the phase described by them as Co7Mo,; (otherwise frequently designated as c) is also isomorphous with the above three. The Co-Fe-Mo system was investigated at 1300°C by Koester and Tonn,5 who found a continuous series of solid solutions between (Co, MO)µ and (Fe, MO)µ Koester6 also indicated similar uninterrupted solid solutions in the Ni-Fe-Mo system. However, since the Ni-Mo binary system does not have a phase isomorphous with F, Koester's diagram is expected to be erroneous. No data appear to be available in the literature concerning the Co-Ni-Mo system. The face-centered cubic (austenitic) solid solut,ions of iron, nickel, and cobalt, which are quite extensive in all three systems at 1200°C, are here designated as the a phase. The body-centered cubic (ferritic) solid solutions, based on iron, are designated in this report as the ? phase, in conformity with the nomenclature used previously.' Experimental Procedure The alloys were prepared by vacuum induction melting in zirconia and alumina crucibles. The lot analyses for the metals used have been given.' The number of alloys prepared was 46 for the Co-Ni-Mo system, 65 for the Co-Fe-Mo system, and 113 for the Ni-Fe-Mo system. The compositions of these alloys were selected with due regard to maximum usefulness in locating phase boundaries. The alloy specimens were annealed at 1200°C in an atmosphere of purified 92 pct helium and 8 pct hydrogen mixture. Alloys consisting almost entirely of the face-centered cubic austenitic a phase, or of the body-centered cubic ferritic c phase were double-forged with intermediate annealing. The double-forged specimens were then final annealed for 90 hr at 1200 °C and quenched in cold water. Alloys containing considerable amounts of any of the other phases could not be forged. Such specimens were annealed for 150 hr at 1200°C and quenched. Microscopic specimens of all alloys were prepared by mechanical polishing, in many cases followed by electrolytic polishing. Description of the polishing and etching procedures used and tabulation of the intended compositions of the alloys prepared are being published in two N.A.C.A. Technical Notes.7,8 , Many of the alloys were analyzed chemically and, in general, the results are in excellent agreement with the intended compositions. X-ray diffraction samples were prepared by filing or crushing homogenized alloy specimens and by reannealing the obtained powders in evacuated and sealed quartz tubes. After annealing for 30 min at 1200°C the tubes were quenched into cold water. X-ray diffraction patterns were made with unfiltered chromium radiation at 30 kv, using an asymmetrical focusing camera of high dispersion. X-ray diffraction and microscopic methods were used jointly to identify the phases present in each specimen. The amounts of the phases in each alloy were estimated microscopically. The phase boundaries were located by the disappearing phase method. The results were used to construct 1200°C isothermal sections for the three ternary phase diagrams. The accuracy of the location of the phase boundaries determined in this manner is estimated to approximately ±1 pct of each component. The portion of the three phase diagrams lying between the µ, P, and 6 phases on the one hand, and the molybdenum corner on the other, has not been investigated. Recently Metcalfe reported0 a high temperature allotropic form of cobalt on the basis of dilatometric results and of cooling curves. In the present work no attempt was made to search for the new phase in the cobalt corner of the Co-Fe-Mo and Co-Ni-Mo systems. No alloy was prepared with more than 80 pct Co; the alloys used were intended to locate the boundary of the a phase saturated with cL. The microstructures of the quenched a alloys near the cobalt COrner gave no suggestion of an in-suppressible transformation On quenching. The location of the boundaries of the a + ? two-phase fields in the Fe-Ni-Mo and Fe-CO-MO systems was determined entirely by the microscopic method. The face-centered cubic a alloys near the ? field transform partially or wholly into the body-centered cubic ? phase on quenching from 1200°C to room temperature. The ? formed in this manner has an
Citation
APA:
(1953) Institute of Metals Division - Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary SystemsMLA: Institute of Metals Division - Intermediate Phases in the Mo-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.