Institute of Metals Division - Intragranular Precipitation of Intermetallic Compounds in Complex Austenitic Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 1594 KB
- Publication Date:
- Jan 1, 1962
Abstract
Seven austenitic alloys of varions base compositions and minor-alloy additions were solution-treated, aged systematically between 1200oand 1800oF, and examined by X-ray and electron metallography. Intragranular preczpitations of µ, Laves, s, ?', Ni3Ti, and x phases were observed as a function of composition and aging time and temperatwre. Phase solubility limits were detevtnitzed within 100Fo intervals. These inter metallic compounds fall into two distinct general classes, and whichever class predomznates depends on base composition. It has become increasingly evident that multicom-ponent austenitic alloys are well characterized by their precipitation processes. Since certain groups of elements act as one, the relationships among these processes are reasonably simple; complete identification of such processes is usually attainable by a systematic aging study with a combination of techniques centered on microscopy and diffraction. Several nickel- and cobalt-base alloys illustrating cellular precipitation and its interaction with general precipitation were reported previously.1 The group of alloys covered in the present paper demonstrates precipitation-hardening reactions involving two distinct classes of intermetallic compounds where the predominating class appears to depend on base composition. This dependency ties in with a crystal-chemistry regularity first observed some twenty years ago by Laves and Wallbaum but never amplified to our knowledge. Results of electron-microscope and X-ray diffraction studies on systematically aged hot-rolled alloys known commercially as S-816, S-590, Rene-41, Incoloy-901, M-308, and M-647 are reported here. Some of these alloys have previously undergone minor-phase analyses by other investiators. Alloy S-816 was investigated by Rosenbaum, Lane and Grant,3 and Weeton and Signorelli.4 Rosenbaum found only CbC in hot-rolled bars. Lane and Grant found CbC and a small amount of M6C in the cast structure and stated that both carbides form during aging, most of the precipitation being CbC. Weeton and Signorelli found CbC, M23C6 and a weak indication of a phase after a slow step-down cooling cycle from 2250°F. Rosenbaum also investigated hot-rolled samples of S-590 and identified CbC and M6C. Preliminary information on Rene-41, gained partly from the present work, was reported by Morris.5 Long-time precipitation phenomena in Incoloy-901 at 1350°Fwere investigated by Clark and Iwanski.B heir raw data re- semble those of our present heat with 0.1 pct B, while their interpretation of these data resembles our interpretation of data from another heat with only 0.001 pct B; they made no statement as to boron content. No previous minor-phase studies of alloys M-308 or M-647 have been reported. EXPERIMENTAL METHODS Table I gives alloy compositions in both weight and atomic percent. Specimens were solution-treated from 1700º to 2200ºF, aged at logarithmic-time intervals up to 1000 hours between 1200 and 1800 F, and examined in accordance with procedures previously described in detail. ' ' Phase extractions were carried out in electrolytic cells containing 800 ml of either 7 pct HC1 in denatured ethanol or 20 pct H3PO4 in water. After electrolysis for 48 hr at 0.1 to 0.2 amp per sq inch, residues were separated by filtration or centrifuging. X-ray powder patterns of residues were recorded on a diffractometer for accuracy and on film for sensitivity. Lattice parameters were calculated by least-squares analyses of indexed sin 8 values, and relative abundances were estimated from intensities of strongest lines of each phase. These phase abundances denote relative amounts with respect to each other rather than to the alloy. Mechanically polished specimens were etched in a freshly mixed solution of 92 pct HC1, 5 pct H2SO4, and 3 pct HNO3. Parlodion replicas for the electron microscope were chromium-shadowed in high vacuum at a glancing angle of 20deg. All electron micrographs are reproduced here with the shadowing source above. The correspondence betweenelectronmicrostructures and phases identified by X-rays was established by a high redundancy of correlation between relative amounts at different stages of aging and examination above and below critical transformation or solubility temperatures. EXPERIMENTAL RESULTS S-816 and S-590—The phases found in S-816 and S-590 after various aging and solutioning treatments are listed in Table 11. These data and the observed
Citation
APA:
(1962) Institute of Metals Division - Intragranular Precipitation of Intermetallic Compounds in Complex Austenitic AlloysMLA: Institute of Metals Division - Intragranular Precipitation of Intermetallic Compounds in Complex Austenitic Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.