Institute of Metals Division - Kinetics and Mechanism of the Oxidation of Molybdenum

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. Simnad A. Spilners
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
392 KB
Publication Date:
Jan 1, 1956

Abstract

The rates of formation of the different oxides on molybdenum in pure oxygen at 1 atm pressure have been determined in the temperature range 500° to 770°C. The rate of vaporization of MOO, is linear with time, and the energy of activation for its vaporization is 53,000 cal per mol below 650°C and 89,600 cal per mol at temperatures above 650°C. The ratio Mo03(vapor.lzing)/MoOS3(suriace) increases in a complicated manner with time and temperature. There is a maximum in the total rate of oxidation at 6W°C. At temperatures below 600°C, an activation energy of 48,900 cal per mol for the formation of total MOO, on molybdenum has been evaluated. The suboxide Moo2 does not increase beyond a very small critical thickness. At temperatures above 725°C, catastrophic oxidation of an autocatalytic nature was encountered. Pronounced pitting of the metal was found to occur in the temperature range 550° to 650°C. Marker movement experiments indicate that the oxides on molybdenum grow almost entirely by diffusion of oxygen anions. USEFUL life of molybdenum in air at elevated temperatures is limited by the unprotective nature of its oxide which begins to volatilize at moderate temperatures. Although the oxide/metal volume ratio is greater than one, the protective nature of the oxide film is very limited. Gulbransen and Hickman' have shown, by means of electron diffraction studies, that the oxides formed during the oxidation of molybdenum are MOO, and MOO,. The dioxide is the one present next to the metal surface and the trioxide is formed by the oxidation of the dioxide. Molybdenum dioxide is a brownish-black oxide which can be reduced by hydrogen at about 500°C. Molybdenum trioxide has a colorless transparent rhombic crystal structure when sublimed, but on the metal surface it has a yellowish-white fibrous structure. It is reported to be volatile at temperatures above 500" and melts at 795°C. It is soluble in ammonia, which does not affect the dioxide or the metal. In his extensive and classic investigations of the oxidation of metals, Gulbransen2 has studied the formation of thin oxide films on molybdenum in the temperature range 250" to 523°C. These experiments were carried out in a vacuum microbalance, and the effect of pressure (in the range 10-6 yo 76 mm Hg), surface preparation, concentration of inert gas in the lattice, cycling procedures in temperature, and vacuum effect were studied. The oxidation was found to follow the parabolic law from 250" to 450°C and deviations started to occur at 450 °C. The rates of evaporation of a thick oxide film were also studied at temperatures of 474" to 523°C. In vacua of the order of 10- km Hg and at elevated temperatures, an oxidation process was observed, since the oxide that formed at these low pressures consisted of MOO, which has a protective action to further reaction in vacua at temperatures up to 1000°C. Electron diffraction studies showed that, as the film thickened in the low temperature range, MOO8 became predominant on the surface. Above 400°C MOO, was no longer observed, MOO, being the only oxide detected. The failure to detect MOO, on the surface of the film formed at the higher temperatures does not militate against the formation of this oxide, since according to free energy data MOO3, is stable up to much higher temperatures. At the low pressures employed, this oxide would volatilize off as soon as it was formed. Its vapor pressure is relatively high and is given by the equations" log p(mm iig) = -16,140 T-1 -5.53 log T + 30.69 (25°C—melting point) log p(mm He) = -14,560 T-1 -7.04 log T+1 + 34.07 (melting-boiling point). Lustman4 has reported some results on the scaling of molybdenum in air which indicate a discontinuity at the melting point of MOO, (795°C). Above the melting point of MOO,, oxidation is accompanied by loss of weight, since the oxide formed flows off the surface as soon as it is formed.5,6 Qathenau and Meijering7 point out that the eutectic MOO2-MOO3 melts at 778C, and they ascribe the catastrophic oxidation of alloys of high molybdenum content to the formation of low melting point eutectics of MOO3 with the oxides of the melts present. Fontana and Leslie -explain the same phenomenon in terms of the volatility of MOO,, which leads to the formation of a porous scale. Recent unpublished work by Speiser9 n the oxidation of molybdenum in air at temperatures between 480" and 960°C shows that the rate of weight change of molybdenum is controlled by the relationship between the rates of formation and evaporation of MOO,. They have measured the rates of evaporation of Moo3 in air at different temperatures and estimated an activation energy of 46,900 cal. This compares with the value of 50,800 cal per mol obtained by Gulbransen for the rate of sublimation of MOO, into a vacuum.
Citation

APA: M. Simnad A. Spilners  (1956)  Institute of Metals Division - Kinetics and Mechanism of the Oxidation of Molybdenum

MLA: M. Simnad A. Spilners Institute of Metals Division - Kinetics and Mechanism of the Oxidation of Molybdenum. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1956.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account