Institute of Metals Division - Kinetics of Grain Boundary Migration in High-Purity Lead Containing Very Small Additions of Silver and Gold

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. W. Rutter K. T. Aust
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
515 KB
Publication Date:
Jan 1, 1961

Abstract

The migration of individual, large-angle grain boundaries has been studied as a function of tempereature and solute concentration in specimens of zone i.e filled lead containig very small additions of silver and of gold. Tile results are compared with various the-ories of grain boundary migration and with observations made prev.iorlsly of grain boundary migration in similar specimens of zone-refined lead containing tin additions. A previous investigation by the authors dealt with [he temperature dependence of grain boundary migration in bicrystals of zone-refined lead containing small additions of tin.' It was shown that tin additions as low as a few parts per million cause a large decrease in the grain boundary migration rate at any given temperature, as well as a marked increase in the temperature dependence of the migration rate. It was found that existing theories of grain boundary migration. based on the motion of dislocations. or upon the concept of atom transfer in groups across the boundary (group process theory). or upon the control of grain boundary motion by volume diffusion of impurity atonls along with the boundary. are incapable of accounting for the observations. The single process theory of grain boundary migration. which is an absolute reaction rate calculation based on the transfer ui atoms singly across the moving boundary, was found to predict the migration rate reasonably well for a number of boundaries whose motion was shown to be very little influenced by impurities, but not for boundaries whose illation was influenced markedly by impurities. It was concluded that the elementary process of grain boundary migration involves the activation of single atoms during transfer across the boundary. and that inadequate knowledge is available to permit the influence of impurities to be properly taken into account. The present study was initiated to check the validity of the above conclusions with other alloy systems, namely high-purity lead with small additions of silver and of gold. Both silver and gold diffuse faster. and with a lower activation energy of volume diffusion. than does tin in lead;' consequently, a study of the effects of silver and gold on grain boundary migration in high-purity lead offered a means of testing theories of boundary migration based on bulk diffusion of the solute (eg. ref. 3). In addition. it was hoped that the present work, in comparison with the results for tin in lead, would provide information concerning which factors are important in determin- ing the interaction between solute atoms and a grain boundary. EXPERIMENTAL PROCEDURE The preparation of bicrystals of zone-refined lead, with various silver or gold additions, was identical to that previously described for the lead-tin alloys.''4 Each bicrystal consisted of a striated crystal which was grown from the melt. and an adjacent striation-free crystal which was introduced by artificial nucleation and growth.''4 The striation or lineage substructure in the melt-grown crystal provided the driving force for grain boundary migration. During the preparation of striated single crystals by growth from the melt, it was found that silver or gold concentrations as low as 2 or 3 ppm by atoms were sufficient to cause formation of the hexagonal cell structure. which is due to the presence of impurity, during freezing. This structure is revealed on the solid-liquid interface by decanting the liquid during freezing. The hexagonal cell structure was observed previously4 in zone-refined lead crystals with tin contents above approximately 200 ppm by atoms. These concentrations of silver, gold, or tin are in agreement with the predicted amounts required for cell formation in lead,5'6 under the present conditions of freezing.4 The absence of cell structure at decanted interfaces, therefore, served as a useful indication that the silver or gold contents were less than 2 or 3 ppm by atoms in the specimens as grown. It was found that grain boundary migration occurred only very slowly when the solute content approached that necessary for cell formation. As a result, the present experiments were conducted with silver or gold additions less than 1 ppm by atoms. This impurity level is well within the solid solubility limits for silver and gold in lead.7 The annealing treatments, measurements of grain boundary velocities, and orientation determinations were carried out as described previously.' However. each bicrystal was also chemically polished in a solution consisting of 8 parts glacial acetic acid and 2
Citation

APA: J. W. Rutter K. T. Aust  (1961)  Institute of Metals Division - Kinetics of Grain Boundary Migration in High-Purity Lead Containing Very Small Additions of Silver and Gold

MLA: J. W. Rutter K. T. Aust Institute of Metals Division - Kinetics of Grain Boundary Migration in High-Purity Lead Containing Very Small Additions of Silver and Gold. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1961.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account