Institute of Metals Division - Kinetics of the Reactions of Zirconium with O2., N2, and H2

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. A. Gulbransen K. F. Andrew
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
12
File Size:
886 KB
Publication Date:
Jan 1, 1950

Abstract

The gas-metal reactions of zirconium are very interesting. The metal is extremely stable at room temperature to reactions with the several gases present in air and the metal will stay bright indefinitely. However, at temperatures of several hundred degrees higher the metal reacts readily with oxygen, nitrogen and hydrogen. This behavior, in addition to the fact that zirconium is one of the higher melting point metals which might have high temperature applications under the proper conditions, resulted in the work reported in this communication. There are several factors which indicate that zirconium might have good oxidation resistance at elevated temperatures. These are: (1) the high melting point of approximately 1860°C, (2) the high melting point of the oxide of approximately 2675°C, (3) the high degree of thermodynamic stability of the oxide to chemical reaction and the low decomposition pressure of the oxide and (4) the possible formation of a continuous oxide film since the volume ratio of oxide to metal is greater than unity. The unfavorable factors are: (1) the metal reacts to form nitrides, hydrides and carbides, (2) the oxide is soluble at elevated temperatures in the metal and (3) the oxide ZrO2 undergoes crystal structure transformations at high temperature. The oxidation resistance of this metal is not only a question of the rate of film formation but is complicated by the fact that the oxide and other reaction products dissolve in the metal which in turn will affect the physical and mechanical properties of the metal. The protection of the metal to nitride formation must be considered separately from the oxide problem. One unfavorable factor is that the volume ratio of the nitride to the metal is about unity. This indicates that a discontinuous film might be formed. This paper will present measurements on the rates of reaction of the metal with O2, H2 and N2 over a wide temperature and pressure range. The reaction in high vacuum and the stability of the several compounds formed will be presented. The results are correlated with fundamental rate theory and with the physical and chemical structure of the metal and film. Literature Although many papers have been published on the chemical reactions of zirconium with various gases, comparatively few are concerned with the protective nature of the metal and its reactions at normal pressures. The studies in the pressure range below 0.01 mm of Hg gas pressure are largely of interest in the nature of the adsorption of gases by hot filaments in high vacuum apparatus. The reactions of zirconium in this pressure range have been reviewed by Fast8 and by RaynOr.27 In spite of certain differences of opinion as to the maximum adsorption temperatures for various gases, the low pressure range is qualitatively understood. Some of these papers will be mentioned briefly here. 1. LOW PRESSURE Ehrke and Slack' find that oxygen reacts above 885°C and hydrogen above 760°C. Nitrogen does not react up to a temperature of 1527°C. Fast9 on the other hand observes that oxygen is absorbed above 700°C and nitrogen at temperatures exceeding 1000°C. Hydrogen is absorbed from 300" to 400°C and liberated between 500" and 800°C. It is readsorbed at 862°C and released above 862°C. Hukagawa and Nambo22 find a rather complicated picture for the absorption of oxygen. A rapid initial absorption is found between 180" to 230°C. Further oxygen is not taken up until a temperature of 450°C is reached. The optimum temperature for complete absorption is 650" to 700°C. Nitrogen is found to be completely adsorbed at 600°C. However some of the gas is evolved at higher temperatures. Their data on the absorption of hydrogen indicate some of the gas is removed at 550°C. Guldner and Wooten17 in a study of the low pressure reactions of zirconium with various gases observed that the reaction with oxygen occurs at temperatures above 400°C and that the oxide is formed. The reactions with carbon monoxide and carbon dioxide occur rapidly at temperatures of about 800°C with the oxide and carbide being formed. Zirconium reacts at temperatures of 400°C slowly and at 800°C rapidly to form the nitride and with hydrogen and water at 300°C to form the hydride and a mixture of the oxide and hydride respectively. 2. NORMAL PRESSURE DeBoer and Fast3 in a study of the electrolysis of oxygen in zirconium find that the metal absorbs up to 40 at. pct of oxygen without forming a new phase. The solubility of nitrogen in the lattice has been studied by de Boer and Fast4 and Fast10 and is found to be considerable. At higher temperatures the oxide dissolves in the lattice at an appreciable rate according to Fast10 and the zirconium surface becomes active. De Boer and Fast4 and Hägg18 have studied the solubility of hydrogen and find that at room temperature the solubility corresponds to ZrH1.95 Desorption occurs on lowering the pressure. Hydrogen is stated to be more soluble in the ß-form and the
Citation

APA: E. A. Gulbransen K. F. Andrew  (1950)  Institute of Metals Division - Kinetics of the Reactions of Zirconium with O2., N2, and H2

MLA: E. A. Gulbransen K. F. Andrew Institute of Metals Division - Kinetics of the Reactions of Zirconium with O2., N2, and H2. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account