Institute of Metals Division - Latent Hardening in Silver and an Ag-Au Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
B. Ramaswami U. F. Kocks B. Chalmers
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
337 KB
Publication Date:
Jan 1, 1965

Abstract

The latent hardening of silver and an Ag-Au alloy was investigated by lateral compression, overshoot in tension and cormpression, and the stability of multiple-slib orientations. The latent hardening of a secondary slip systenz depends on its relation to the primary slip system. For most secondary slip systems the latent hardening is larger for Ag-10 at. pct Au than for pure silver. The maximum increase in. flow stress on a secondary slip system over that of the primary slip system was 40 pct. The work hardening during the lateral-compression test on the latent system after prestress on the primary system is iuterbreted in terms of the preferential distribution of barriers to dislocation movement with respect to the active slip system in work-lzardened fcc crystals. The work-hardening in fcc crystals is mainly due to the dislocation interactions and the barriers to dislocation movement formed as a result of reactions between dislocations of different slip systems. The operation of sources on the latent system depends on the flow stress of those systems; hence, the increase in flow stress of a latent system due to glide on an active system, which is called latent hardening, is an important element in understanding the phenomenon of work hardening. The problem of latent hardening has attracted the attention of many investigators in the past. For example, a theoretical study of the elastic latent hardening of the latent systems due to glide on an operative system has been made by Haasen' and ~troh. These calculations, however, neglect the stress required for the intersection of forest dislocations by the glide dislocations, a factor which would be important for producing macroscopic strains on the secondary slip systems. The importance of this factor will become evident from the results presented here. Attempts have also been made to determine the latent hardening of different slip systems by experimental means by the methods summarized in Table I.3-9 The experimental methods used have been subject to certain limitations. For instance, in the method used by Hauser,9 frictional constraints between the specimen and the compression platen were not eliminated by proper lubrication (see Hos- ford10). Secondly, with the exception of Kocks,6 Hauser,9 and Rohm and Kochendorfer,11 latent-hardening studies have been made on only one of the slip systems, i.e., on either the conjugate or the coplanar slip system; hence, extensive results are not available on the latent hardening of different slip systems in the same materials, with the exception of aluminum.6 It was therefore decided to study the latent hardening of the conjugate, critical and half-related slip systems in silver. Similar experiments were done in Ag-10 at. pct Au to study the effect of solute (gold) on the latent hardening of silver. Lastly, indirect evidence can be obtained by a study of the orientation stability of crystals of multiple-slip orientations in tension and compression. This method has been used by Kocks6 to supplement his studies of latent hardening in aluminum. Similar studies were made at room temperature in single crystals of silver. EXPERIMENTAL PROCEDURE The single crystals of the desired orientations were grown and the tensile test specimens were prepared as described in Ref. 12. The compression tests were made on 1/4-in.-cube specimens. The specimens were cut from single crystals, in the Servomet spark-erosion machine.13 The two cut surfaces were planed using the lowest available planing rate in the machine to minimize the deformation layer. A brass strip was used as the planing tool. This method of preparation ensured plane parallel faces for the compression tests. The deformed material was removed by prolonged etching in a weak etching solution. A weak etching solution was used to prevent pitting of the surfaces and to ensure uniform etching. About 25 to 50 µ of material were removed from all faces by the etching treatment. The specimens were then annealed for 24 hr at 940°C in oxygen-free helium and cooled in the furnace to room temperature over a period of 7 hr. After annealing, the orientation of the specimens was determined by Laue back-reflection technique to make sure that no recrystallization had occurred on annealing. The compression-test technique and setup are described in Ref. 14. The Laue back-reflection technique was used to study the overshoot in tension, the overshoot in compression, and the stability of the axial orientation in tension and compression. The tests were interrupted after every few percent strain to determine the axial orientation. In investigating the overshoot in compression, the operative system was determined by studying the asterism of the Laue spots.
Citation

APA: B. Ramaswami U. F. Kocks B. Chalmers  (1965)  Institute of Metals Division - Latent Hardening in Silver and an Ag-Au Alloy

MLA: B. Ramaswami U. F. Kocks B. Chalmers Institute of Metals Division - Latent Hardening in Silver and an Ag-Au Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1965.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account