Institute of Metals Division - Mechanical Properties of Beryllium Fabricated by Powder Metallurgy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 564 KB
- Publication Date:
- Jan 1, 1955
Abstract
The factors which control the rate of dissolution of pure gold in cyanide solution were studied both directly and through measurement of solution the current-potential curves for the anodic and cathodic portions of the reaction. The mechanism of dissolution is probably electrochemical the reaction in nature, and the rate is determined by the rate of diffusion of dissolved oxygen or cyanide to the gold surface, depending on their relative concentrations. The significance of the results and the effects of impurities are considered. ALTHOUGH the dissolution of gold in aerated cyanide solutions has been used as an industrial process for treatment of gold ores since the late nineteenth century, the factors which determine the rate of the reaction have never been identified unambiguously. Studies of the rate of dissolution by Maclaurin,1 White,2 Christy,3 Beyers,4 Thompson,6 and others are contradictory in their conclusions; some claiming that diffusion of the reactants to the gold. surface controls the rate, and others that the chemical reaction is inherently slow and related to high activation energy for the reaction. Christy3 and 'Thompson" both suggest that the reaction is electrochemical in nature and that the dissolution of gold proceeds at local anodic regions while the oxygen is reduced at cathodic regions on the gold surface. Although their studies are ingenious and do indicate an electrochemical reaction under the conditions of study, their experiments were of limited nature and failed to identify the rate-controlling process in the system. The importance from an industrial viewpoint of a knowledge of the mechanism and rate-controlling factors in gold dissolution can be illustrated as follows: If the rate is controlled by a slow chemical reaction rather than by diffusion of the reactants, then an increased temperature should have a marked accelerating effect; agitation of the slurry should have no effect on rate: and increased concentration of reactants should cause acceleration of the rate. If the rate is controlled by the diffusion of one or the other of the reactants to the gold surface, then increased agitation should increase the rate; increased temperature will increase the rate, but not as much as for the case of a slow chemical reaction; increased concentration of the reactant which is diffusion limited will increase the rate; and the concentration of other reactants should be without effect on the rate. It may be concluded that for design of a commercial process for gold leaching, the rate-controlling factors of the reaction should be understood so that an intelligent choice of the conditions of agitation, temperature, and reactant concentration may be made. The experiments described here lead to the unambiguous conclusion that in a system of pure gold and a pure aerated cyanide solution the rate of dissolution is controlled either by the rate of diffusion of dissolved oxygen or cyanide to the gold surface, depending on the relative concentrations of each. There is also ample, but not conclusive, evidence that the mechanism of the reaction is identical to that of electrochemical corrosion. The practical significance of these conclusions will be discussed later in the paper. Experimental The experimental method used in this work was to employ an electrolytic cell which performed the overall gold-dissolution reaction, and to study the anodic and cathodic reactions of this cell as to their nature and the rate-controlling factors. Simple experiments on the rate of dissolution and the potential of the dissolving specimen also were performed under conditions of agitation, temperature, and concentration identical to those used in the electrode studies. Analysis of the electrode studies by well established theories of electrochemical corrosion were made, and the results were found to bear a one-to-one relation with actual rate and potential measurements. Electrode Studies: The Anodic Reaction: The gold specimen used for all of the electrode studies and the rate determination consisted of a sheet of 99.99 + pct Au wrapped around a lucite rod and sealed at the edges with plastic cement, thus forming a cylinder of gold of known and constant area (8.0 sq cm). The lucite rod was threaded into a brass spindle which could be rotated at speeds of 100, 300, and 500 rpm. For the electrode studies electrical contact between the gold cylinder and the brass spindle was made by means of a gold strip covered with plastic. The anodic dissolution of gold was studied by immersing the electrode in a solution containing known concentrations of KCN and KAu(CN)2 but free of oxygen, and by passing an anodic current through the gold electrode. The pH of the solution was maintained between 10.5 to 11.0 in these and all other tests by addition of KOH. The pH was measured before and after each test by means of a glass-elec-
Citation
APA:
(1955) Institute of Metals Division - Mechanical Properties of Beryllium Fabricated by Powder MetallurgyMLA: Institute of Metals Division - Mechanical Properties of Beryllium Fabricated by Powder Metallurgy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.