Institute of Metals Division - Metallographic Study of the Martensite Transformation in Lithium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. S. Bowles
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
305 KB
Publication Date:
Jan 1, 1952

Abstract

THE martensite transformation in lithium, dis- covered by Barrett,' has been studied extensively by X-ray techniques by Barrett and Trautz,² and Barrett and Clifton.V he present paper reports the results of an investigation into the metallographic characteristics of lithium martensite. Such an investigation has not been carried out before. The spontaneous transformation in lithium consists of a change from a body-centered cubic to a close-packed hexagonal structure with the hexagonal layers in imperfect stacking sequence." As far as is known at present, this transformation can be regarded as being crystallographically equivalent to the body-centered cubic to close-packed hexagonal transformation that occurs in zirconium,5 although stacking errors have not been reported in zirconium. From a study of the orientation relationships in zirconium, Burgers5 as proposed that the martensite transformation, b.c.c. to c.p.h., occurs by a heterogeneous shear on the system (112) [111]. The crystal-lographic principle underlying this proposal is that the configuration of atoms in the (112) plane of a b.c.c. structure is exactly the same as that in the (1010) plane of a close-packed hexagonal structure based on the same atomic radius. The pattern in 2v2 both these planes is a rectangle d X 2v2d where v3 d is the atomic diameter. Thus a close-packed hexagonal structure can be built up from a body-centered cubic structure by displacing the (112) planes relative to each other.* This mechanism leads to orientations that can be described by the relations: (110)b.c.e. // (0001)c,p.h.; [111]b.c.c. // [1120]c.p.h Observations confirm these relations. In zirconium, Burgers' measurements indicated an angle of 0" to 2" between the close-packed directions, while Barrett's measurements on lithium indicated an angle of 3". According to the Burgers' mechanism, the martensite habit plane for this transformation would be expected to be the (112)b.c.c. plane, for this plane would not be distorted by the transformation. One of the purposes of this investigation was to find out whether the observed lithium habit plane agrees with this prediction of the Burgers' mechanism. Experimental Procedure Materials: The lithium was from the same purified ingot used by Barrett and Trautz.² The Bridgman technique was used to produce single crystals. To maintain a temperature gradient in the melt, during the production of these crystals, it was necessary to use a steel mould with a wall thickness of only 0.015 in. Metallographic Techniques: Lithium specimens could be given an excellent metallographic polish by swabbing them gently with cold methyl or ethyl alcohol.? The best results were obtained with methyl alcohol saturated with the reaction product, lithium alcoholate. With higher alcohols the reaction became progressively slower and the attack became an etch pit attack rather than a polish attack. Butyl and amyl alcohols were used for macroetching. After polishing, it was necessary to remove all traces of alcohol from the specimens; otherwise, on subsequent quenching in liquid nitrogen, the alcohol froze to a glassy film. The alcohol was removed with dry benzene. The benzene in turn had to be removed before quenching, but since it does not react with lithium it could be allowed to evaporate. The specimens could then be quickly quenched before they began to tarnish. This operation could be carried out in air on all but excessively humid days when it was advisable to use an atmosphere of dry nitrogen or argon. For examinations at room temperature, the specimens could be transferred directly from the benzene bath into a bath of mineral oil. In mineral oil the specimens oxidized slowly by the diffusion of oxygen through the oil but the structure remained visible for about an hour. Lithium Martensite: Specimens prepared in the manner described above transformed spontaneously to martensite with an audible click when quenched into liquid nitrogen; i.e., M, was above the boiling point of nitrogen (77°K). The disparity between this result and the M, temperature of 71°K, found by Barrett and Trautz, is probably to be attributed to the large grain size and freedom from mechanical deformation of the specimens used in the present work. The relief effects produced by the transformation did not disappear when specimens were quenched from liquid nitrogen into mineral oil at room temperature. This permitted the microstructures to be studied at room temperature where, of course, the martensitic phase was no longer present. Typical micrographs of lithium "martensite" made at room temperature are reproduced in figs. 1, 2, and 3. As anticipated by Barrett and Trautz, the microstruc-
Citation

APA: J. S. Bowles  (1952)  Institute of Metals Division - Metallographic Study of the Martensite Transformation in Lithium

MLA: J. S. Bowles Institute of Metals Division - Metallographic Study of the Martensite Transformation in Lithium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1952.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account