Institute of Metals Division - Microstructure and Mechanical Properties of Iodide Titanium (Discussion page 1562)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
F. C. Holden H. R. Ogden R. I. Jaffee
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
96 KB
Publication Date:
Jan 1, 1954

Abstract

ECENT papers dealing with the properties of unalloyed iodide titanium have been directed primarily at the determination of base-line properties for alloy investigations. Early work was limited to a few tests because of the limited availability of iodide titanium at the time. In the results of papers by Campbell et al.,1 Gonser and Litton,2 Jaffee and Campbell,3 inlay and Snyder,4 and Jaffee, Ogden, and Maykuth, data on mechanical properties are presented for unalloyed iodide titanium in the annealed and cold-worked conditions. Data are presented in this paper which show the effects of heat treatment on the structure and mechanical properties of commercially produced iodide titanium. Correlation is made between microstruc-tural variables and the mechanical properties. Experimental Procedures Melting Stock: The melting stock used was as-deposited iodide titanium, produced by New Jersey Zinc Co. The furnished analysis showed the following range of impurities: N, 0.004 to 0.008 pct; Mn, 0.005 to 0.013; Fe, 0.0035 to 0.025; Al, 0.013 to 0.015; Mo, 0.0015; Pb, 0.0045 to 0.0065; Cu, 0.0015 to 0.002; Sn, 0.001 to 0.01; Mg, 0.0015 to 0.002; and Ni, 0.003. Hydrogen content as determined by vacuum-fusion analysis was 0.0091 wt pct (0.44 atomic pct) after arc melting and fabrication. Nitrogen analysis on the arc-melted and fabricated titanium showed a content of less than 0.002 pct N. The average hardness of the furnished stock was Rf 70, or approximately 85 VHN. Melting Procedure: The as-deposited rods were rolled, sheared, and degreased in preparation for arc melting. The charge was arc-melted with a tungsten electrode in a water-cooled copper crucible under a positive pressure of high purity (99.96 pct) argon. The final ingot was approximately 2 in. in diameter and showed no increase in hardness over that of the initial stock. Fabrication: Heating for fabrication was done in air. It was begun by forging the ingot into a 3/4 in. diam rod, at an initial temperature of 1600°F. Scale was removed by sandblasting. The rod was then swaged to 1/4 in. diam at room temperature through a series of 20 dies, with approximately 10 pct reduction in area between each die. An anneal of 1 hr at 850 °C in air was given after the 1/2 in. die, such that the final cold reduction was 75 pct. Sections cut from this rod were used for test and microstructure specimens. Heat Treatment: Heat treatments were carried out in resistance tube furnaces with stainless-steel linings, under an atmosphere of gettered argon. As further protection against contamination, the specimens were packed in titanium turnings in a titanium sleeve. Control experiments have shown negligible hardness increases with this method, indicating that contamination from oxygen and nitrogen is slight. Three cooling rates were employed in this work; these have been designated as water quenching, argon cooling (to simulate air cooling under a controlled atmosphere), and furnace cooling. The cooling rate for an argon cool is 100°C per min for the first minute, with an average cooling rate of 35°C per min over a 15-min period. A furnace cool requires about 10 hr, with an average cooling rate of 3.6oC per min during the first hour, and an average cooling rate of 1.2°C per min over the 10-hr period. Microimpact Test: The specimen adopted was based on the cylindrical Izod Type Y specimen (ASTM, E23-41T). All dimensions were reduced to half scale, including the notch radius. Specifications are shown in Fig. 1. The specimen is held vertically in an adapter and broken as a cantilever beam. Impact tests were run on a constant-velocity (11.34 ft per sec) Tinius Olsen impact testing machine with a total available energy of 100 in.-lb. Tests were made to determine the correlation between this microimpact and the standard V-notch Charpy impact test. Curves showing impact energy as a function of temperature for both impact tests are plotted in Fig. 2. Transition temperatures, when they occur, are about the same for both impact tests. All three titanium-rich materials have the same conversion factor, 10. Tensile Testing: Tensile tests were conducted on Baldwin-Southwark testing machines using the 600, 2400, or 3000 1b range. Specifications for the test specimen were taken from the 1948 edition of the ASM Metals Handbook, and are shown in Fig. 1. Strain measurements were made using an SR-4 resistance gage (Type A-7) cemented to the reduced section in conjunction with a lever-type extenso-meter. Readings on the SR-4 strain indicator were
Citation

APA: F. C. Holden H. R. Ogden R. I. Jaffee  (1954)  Institute of Metals Division - Microstructure and Mechanical Properties of Iodide Titanium (Discussion page 1562)

MLA: F. C. Holden H. R. Ogden R. I. Jaffee Institute of Metals Division - Microstructure and Mechanical Properties of Iodide Titanium (Discussion page 1562). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1954.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account