Institute of Metals Division - Microstructure of Magnesium-Aluminum Eutectic

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. S. Yue
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
665 KB
Publication Date:
Jan 1, 1962

Abstract

The movphology of the Mg-32 wt pct Al eutectic has been studied as a function of freezing- rate and temperature gradient. At slow freezing rates a lamellar eutectic was formed; whereas, a rod-like eutectic was generated at fast rates. The inter-lamellar spacing increased as the freezing rate decreased in aggreement with theoretical predictions. Lamellar faults, morphologically similar to edge dislocation models in crystals, were responsible for the subgrain structures in the eutectic mixture. A linear increase in fault density with freezing rate was observed. Fault concentl-ations of the order of 10 per sq cm for a range of freezing rates from 0.6 to -3.0 x 10 cm per sec were estimated. The transformation from lamella?, to rod-like morphologies was determined experimentally to be dependent on the freezing rate and independent of the temperature gradient. Moreover, the number of rods formed per- unit cross-sectional area increased exponentiallv with increasing freezing rote. BRADY' and portevin2 classified eutectic structures into lamellar, rod-like, and globular according to the morphology of the solid phases present. Although this classification is quite descriptive, very little has been reported on the details of the mechanism by which the eutectic structures are formed. Recent work by Winegard, Majka, Thall, and chalmers3 and by chalmers4 on lamellar eutectic solidification suggest that the maximum thickness of the lamellae decreases with increasing rate of solidification due to inadequate time for lateral diffusion. scheilS and Tiller' have shown theoretically that the lamellar widths indeed depend on the solidification rate. However, there has been no experimental evidence to support the theory. Chilten and winegard7 have studied the interface morphology of a eutectic alloy of zone-refined lead and tin. They found that the lamellar width decreased as the freezing rate increased in agreement with the theoretical predictions of scheils and Tiller.' More recently, Kraft and Albright' have investigated the microstructures of the A1-CuA12 eutectic as a function of growth variables. They observed lamellar faults present in the lamellar eutectic, similar to edge dislocation models in crystals. Furthermore, Kraft and Albright reported that they could not designate which extra lamellar was responsible for the formation of a lamellar fault even under electron microscopic magnification. In this paper, the morphology of the Mg-A1 eutectic structure is described. The effects of freez- ing rate on the interlamellar spacing and on the lamellar fault density are presented in detail. The transformation from lamellar to rod-like eutectics is discussed in terms of the freezing rate and the temperature gradient. EXPERIMENTAL PROCEDURE The experimental details of alloy preparation, the decanting mechanism and the determinations of the freezing rate and the temperature gradient have been reported elsewhere. Measurements of plate-edge angles were made with a microscope. The true angles used to determine the interlamellar spacings were determined by a two surface analysis technique.'' Since the decanted interface structure does not represent the true eutectic morphology on the solid,g all measurements were made from an area in the solidified bar behind the interface. Measurements of the apparent interlamellar spacings between the two phases of the eutectic were made on a photographic negative by means of a calibrated magnifier. Each value listed in Table I represents the average of thirty measurements on one negative. In general, these measurements are approximately equal with an error of less than pct. The average rod diameter for each specimen was also measured on a magnified photomicrograph. Each value of the diameter represents the average of fifty measurements. RESULTS AND DISCUSSION The experimental observations and their discussion to be presented here are restricted to the morphology of the eutectic structure and to the effects of the freezing rate and the temperature gradient on the solidification of eutectics. INTERLAMELLAR SPACING It has been shown previouslyg that the micro-structure of the decanted interface and the longitudinal section of the Mg-A1 eutectic is characterized by the presence of both lamellar and rod-like morphologies. The lamellae become more regular as the freezing rate is decreased. A three-dimensional photomicrograph representing a perfect lamellar morphology is illustrated in Fig. 1. The lamellae of the top and longitudinal sections of the specimen are regularly spaced while those in the transverse section are not quite straight and parallel. Their parallelism is slightly distorted because fault lines producing a discontinuity are present. A method for calculating the interlamellar spacings A, is described in Appendix 1. The true
Citation

APA: A. S. Yue  (1962)  Institute of Metals Division - Microstructure of Magnesium-Aluminum Eutectic

MLA: A. S. Yue Institute of Metals Division - Microstructure of Magnesium-Aluminum Eutectic. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account