Institute of Metals Division - Nature of the Ni-Cr System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Robin O. Williams
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
501 KB
Publication Date:
Jan 1, 1958

Abstract

AN investigation has been made of the Ni-Cr system for the purpose of elucidating certain points, namely the nature of aging in both terminal solid solutions and the nature of the phase diagram. Information pertaining to solubilities and precipitation has been obtained. Experimentation Five alloys, Table I, were arc melted in a cold copper crucible using electrolytic chromium and car-bony1 nickel, both dry hydrogen treated. These 100 g buttons were homogenized 24 hr at 1300°C in dry hydrogen and air cooled. Powders were prepared by filing or pulverizing and subsequent heat treatment was done in vacuum or helium using titanium chips as a getter. Powder of —80 mesh was filed from the 60 pct Ni alloy quenched from 1000°C and was sealed in silica under vacuum using a 250 °C outgassing. After aging as indicated in Table I1 the lattice parameters were measured on the quenched samples using the standard cos" 6 extrapolation. These parameters are considered accurate to roughly 0.0001A. In all cases chromium lines of 2.8812 ± 0.0005Å at 30°C were found. Drastic quenching from sufficiently high temperatures produced very sharp body-centered-cubic lines in the first four alloys without indications of transformations. Temperatures to 1250°C were used. Solid samples less than 1/16 in. thick were quenched in water without transformation and the powders could be adequately quenched in small helium filled thin wall silica tubing using a water quench. For those powder samples which were quenched from the two phase field the relative intensity of the body-centered-cubic lines and the face-centered-cubic lines were estimated and extrapolated to give the indicated solubility data in Fig. 1. The data for the two higher alloys were somewhat limited, the plotted points being the lowest temperature where no nickel phase was found. Neither filing, abrading, pulverizing, nor cooling to —190°C produced any new diffraction lines for solid samples quenched from the single phase region, nor did the character of the body-centered-cubic lines change Single phase body-centered-cubic powders likewise did not change on cooling to —190°C. Also, samples which had some precipitation due to inadequate quenching showed no additional changes under these conditions. The first change apparent by X-ray diffraction form samples quenched almost fast enough to prevent precipitation was the diffuseness of the body-centered-cubic lines, particularly on the low angle side, For slower cooling rates the diffuse face-centered-cubic lines appeared. Work on the large grained castings showed profuse streaking through some of the Laue spots while oscillating patterns showed broad body-centered-cubic and face-cen-tered-cubic lines as well as some new lines. For the 23.6 pct Ni alloy the new lines corresponded to 2.16, 1.96, and 1.86A and were more similar in character to the face-centered-cubic lines than the body-centered-cubic lines. Samples which were air cooled gave only face-centered-cubic and body-centered-cubic lines which were still broad. One pattern indicated that face-centered-cubic (111) plane was parallel to a body-centered-cubic (110) plane. For those samples which were examined by light microscopy there were details which were not resolved. However, varied and beautiful structures were obtained. Fig. 2 is of an alloy quenched in a helium filled silica tube from the single phase region and shows particles associated apparently with dislocations which are arranged in low angle boundaries. Finer, general precipitation has also taken place within the grains. Figs. 3 to 5 show the variety of structures produced in these alloys on continuous cooling. It appears that there are four distinct modes of precipitation as evidenced by these, figures. Annealing these structures at higher tem-peratures in the two phase field gives structures as shown in Fig. 6, which shows nickel plates in the chromium matrix which reprecipitated nickel on a much finer scale of the final quench. Lower annealing temperatures and shorter times naturally give finer plates of the nickel-rich phase. Samples of the first four alloys were annealed for appreciable times between 900º and 1250°C and gave structures like Fig. 6. The relative amounts of the two phases were measured and extrapolated to give solubility data as indicated in Fig. 1. The point at 1250°C was deduced from data of Oxx.1 These and most of the other samples were checked for ferromagnetism but none was apparent. In fact, it appeared that the magnetic susceptibilities were not more than three times that for paramagnetic chromium. Discussion In Fig. 1 it is seen that the solubility of nickel in chromium can be represented by a slightly curved line on the usual log X vs 1/T plot, These data are believed to be accurate to roughly 5 to 10º. There is only fair agreement with the data of Taylor and
Citation

APA: Robin O. Williams  (1958)  Institute of Metals Division - Nature of the Ni-Cr System

MLA: Robin O. Williams Institute of Metals Division - Nature of the Ni-Cr System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1958.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account