Institute of Metals Division - Nickel-Activated Sintering of Plasma-Sprayed Tungsten Deposits

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. H. Brophy K. G. Kreider J. Wulff
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
771 KB
Publication Date:
Jan 1, 1963

Abstract

The technology of nickel-activated sintering of tungsten powder has been successfully applied to the densification of plasma-sprayed tungsten. Nickel was added by infiltration in a zinc solution followed by evaporation of the solvent. After sintering one hour at 1300°C density 95 pct of theoretical and transverse rupture strength of 74,000 psi were obtained. Shrinkage was found to be anisotropic and the mechanism of densification was comparable to that found in the nickel-activated sintering of tungsten powder. 1 HE use of a plasma spray gun for the fabrication of massive tungsten parts has become increasingly interesting. Applications now exist where a deposit in the as-sprayed condition is satisfactory. However, these deposits are generally characterized by a lamellar anisotropic microstructure containing 15 pct porosity of which, typically, two-thirds is open to the surface. Mechanically, the as-sprayed deposits fail at relatively low stress levels with a biscuit-like fracture. As a result of these problems the possibility of improving structure and strength by sintering treatments subsequent to spraying is particularly attractive. Preferably this sintering treatment should be adaptable to large bodies of sprayed metal. The similarity between the as-sprayed tungsten structure and that of a powder compact suggests that the relatively low-temperature activated sintering technique1 might be profitably employed in the densification of plasma-sprayed tungsten. It was the purpose of the present investigation to develop a technique for introducing the nickel-activating agent into the sprayed structure, to evaluate the amount and mechanism of densification obtained as a function of time and temperature, and to obtain an indication of the relative strength before and after sintering. EXPERIMENTAL PROCEDURE Powder used for spraying was purchased from the Wah Chang Corp. in several size fractions ranging from an average size of 4 to 150 . These powders were sized further for an explicit study of the influence of average feed size on densification. All powders were dried at 200°C before use. Spraying was accomplished with a Plasma Flame unit manufactured by Thermal Dynamics Corp. Several modifications of the unit were helpful in conducting the investigation. A variable speed auger feed mechanism coupled with the carrier gas mecha nism facilitated the use of fine particle sizes. A coil of ten turns of copper tubing in series with the arc power and concentrically would around the nozzle improved nozzle life and extended the range of operating currents available. The function of the auxiliary coil was to cause the arc to spin and to prevent impingement at only one point in the nozzle. Normally air sprayed deposits were made with an arc maintained at 400 amp at 50 to 70 v. The arc was blown by a gas mixture containing from 5 pct H, 95 pct N for the finest powder feed sizes ranging to 20 pct H, 80 pct N for the coarsest size. The flow rate was maintained at 100 cu ft per hr NTP through a nozzle of 0.25 in. ID. When apraying in air, the powder stream was directed toward an aluminum substrate for ease of mechanical removal of the deposit. The substrate was cooled by diverting the plasma flame with an air jet, and a second jet was directed on the deposit surface. In this configuration a gun-to-work distance of 2 to 3 in. was found to be satisfactory. Fig. 1 represents a typical as-sprayed deposit micro-structure. Laboratory studies of protective atmosphere spraying were carried out in cylindrical chamber 8 in. in diam by 18 in. in length. In operating the nozzle attached to such a chamber, particular care was required to avoid nozzle burn out due to reduced gas flow. The structure and density of the chamber sprayed deposits varied over wide ranges depending on substrate temperature. For the purposes of this investigation, flat deposits were made approximately 2 in. sq by 3/8 in. thick. From these deposits individual samples were cut an ground to a rectangular shape typically 1 1/2 in. by 1/8 in. sq such that the long dimension was perpendicular to the spraying direction. For the study of shrinkage anisotropy deposits up to one inch thick were produced. From these, rectangular samples were cut having a longer dimension parallel to the spraying axis. Prior to the addition of activating agent, the samples were deoxidized in hydrogen at 800°C for 20 min. No detectable dimensional or microstructural change was observed after this treatment. The addition of nickel was accomplished by infil-
Citation

APA: J. H. Brophy K. G. Kreider J. Wulff  (1963)  Institute of Metals Division - Nickel-Activated Sintering of Plasma-Sprayed Tungsten Deposits

MLA: J. H. Brophy K. G. Kreider J. Wulff Institute of Metals Division - Nickel-Activated Sintering of Plasma-Sprayed Tungsten Deposits. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account