Institute of Metals Division - Observations on Twinning in Zone-Refined Tungsten

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 3
- File Size:
- 710 KB
- Publication Date:
- Jan 1, 1962
Abstract
Mechanical twins were produced in zone-refined tungsten single crystals by explosive working at room temperature. These twins are parallel to (112) planes and have irregular boundaries rather than the classical plane twin boundaries. These boundaries aye grooved surfaces in which the grooves themselves are parallel to a <111> direction and the sides of the grooves appear to be par-allel to (110) planes. TWINS were produced in tungsten single crystals by explosive working at room temperature. These twins differ in character from any previously reported for tungsten; however, they are similar to those found in molybdenum after compression at -196°C.1 Deformation twins "resembling Neumann bands in ingot iron" have been observed in tungsten by Bech-told and Shewmon.2 This observation was made with sintered polycrystalline tungsten pulled in tension to fracture at 100°C and using a strain rate of 2.8 x 10-4 sec-1. More recently Schadler3 found deformation twins in zone-refined tungsten single crystals pulled in tension at -196"' and -253°C. These tests were conducted using a strain rate of 3.3 x l0-4 sec-1, and the twin bands were found to be parallel to a (112) plane. Deformation twins in tungsten's sister metal, molybdenum, were observed by Cahn.4 These twins were produced by compressing small (0.7 mm) vapor-deproducedposited molybdenum single crystals at -183°C. The compression was performed 'by impact." By the use of precession X-ray techniques, Cahn was able to identify the twin plane as {112} and the shear direction as <1ll>. Mueller and Parker1 produced deformation twins in polycrystalline electron-beam-melted molybdenum by compression at -196°C. Their "loading rate" was 5000 psi per min which, judging from their stress-strain curve, corresponds to a strain rate of approximately 0.3 x 10-4 sec-1. These twin bands were found to be parallel to (1 12) planes; however, they differed in appearance from previously observed twins. In place of straight and parallel twin boundaries they were found to be irregular, jagged, and sawtoothed. The sides of the saw teeth were identified as (110) planes and irrational planes of a (111) zone. The twins observed in the present work in tungsten single crystals are similar in appearance to those of Mueller and Parker in polycrystalline molybdenum. The starting material used in this investigation was 3/16-in. diam commercial tungsten rod produced by powder-metallurgy techniques. This material was converted to a single crystal by the electron-bombardment floating-zone technique.= The process was carried out in a vacuum of 10-5 mm of Hg using a traversing speed of 4 mm per min. Segments (=2 in. long and 3/16 in. in diam) of two crystals (A and B) produced in this manner were studied. Crystal A received one zoning pass, while crystal B received two passes. The two crystals were explosively worked at Bat-telle Memorial Institute in the following manner. A 1/2-in.-thick layer of plastic was applied to the crystals to serve as a buffer in an attempt to prevent cracking. The composite, crystal and buffer, was then wrapped with 1/8-in.-thick DuPont sheet explosive EL506A2 and detonated in water at room temperature. Metallographic samples of the worked crystals were prepared, and back-reflection Laue X-ray patterns were obtained using unfiltered molybdenum radiation. RESULTS AND DISCUSSION Blasting the crystals as described above failed to prevent cracking. The crystals fractured into several fragments about 3/16 to 1/2 in. long; however, the fragments were of sufficient size to be useful for the subsequent study. The diamond pyramid hardness of the crystals after blasting was in the range 430 to 450 as compared with 340 for the as-melted material, which shows a definite hardening resulting from plastic deformation. These hardness values were obtained using a 1000-g load and taking readings only in sound portions of the crystals free of cracks. The crystals exhibited profuse twinning as shown in Fig. 1. No such structure is present in the as-melted condition. Most of these twins have jagged twin boundaries and are similar in appearance to those found in molybdenum by Mueller and Parker. The twins in both crystals were found to be parallel to {112} planes. This identification was made by using the conventional two-trace method. Subsequent efforts to describe these twins more fully were carried out on crystal A. If the longitudinal axis of crystal A is placed in the (001)-(011)-(Il l) basic triangle of the standard cubic stereographic projection, as in Fig. 2, then the two sets of twins shown in Fig. 1 are parallel to the (112) and (121) planes. Fig. 3 shows a schematic representation of a twin with jagged boundaries. This type of twin with a <111>
Citation
APA:
(1962) Institute of Metals Division - Observations on Twinning in Zone-Refined TungstenMLA: Institute of Metals Division - Observations on Twinning in Zone-Refined Tungsten. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1962.