Institute of Metals Division - Phase Diagram and Thermodynamic Properties of the Yttrium-Zinc System

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 837 KB
- Publication Date:
- Jan 1, 1963
Abstract
Thermal, metallographic, and vapor pressure data were obtained to establish the pkase boundaries and the standard free energy, enthalpy, and entropy of formation for the compounds in the Y-Zn system. Three coinpounds with stoichiometric formulas of YZn, YZn2, and Y2Zn17 melt congruently at 1105", 1080°, and 890°C, respectively. Four compounds with stoiclziometric formulas of YZn3, YZn4, YZn5, and YZn,, undergo perztectic reactions at 905", 895", 870º, and 685ºC, respectively. Three eutec-tics exisl in this system with the .following eutectic temperatures and zinc contents in wtpct: 875ºC, 23.2 Zn; 1015ºC, 51 Zn; 865ºC, 82 Zn. The YZn, pkase undergoes an allotropic transformation. In the two phase YZn2 -YZn alloys the trans.formation gives a weak thermal arrest at 750°C, whereas in the two phase YZn2-YZn3 alloys no thermal arrest is observed and the transformation occurs over a temperature range below 750°C. At 500°C the free mzergies of formation per lnole vavy from —18,090 for YZn to —53,430 fov YZr11 and corresponding enthalpies vary from -24,050 to -92,080. The free energies and enthalpies per g atom as a function of composition show a maximum for the YZn2 phase; the 500°C values are -9580 and -13,180, vespectively. 1 HE only information found in the literature on Y-Zn alloys was the observation reported by Carlson, Schmidt. and speddingl that Y-20 wt pct Zn forms a low melting alloy. The alloy was produced by the bomb-reduction of YF3 and ZnF2 with calcium in an investigation of methods for producing yttrium metal. The solubility of yttrium in zinc has been determined by P. F. woerner2 and reported by Chiotti, Woerner, and Parry.3 In the temperature range 495" to 685°C the solubility may be represented by the relation In these equations N represents atom fraction of yttrium and T is the temperature in degrees Kelvin. The purpose of the present investigation was to establish the phase diagram for the Y-Zn system and to determine the standard free energy, enthalpy, and entropy of formation for the compounds formed. MATERIALS AND EXPERIMENTAL PROCEDURES The metals used in the preparation of alloys were Bunker Hill slab zinc, 99.99 pct pure, and Ames Laboratory yttrium sponge. Arc-melted yttrium buttons contained the following impurities in parts per million: C-129, N-12, 0-307, Fe-209, Ni-126, Mg-13, Ca < 10, F-105, and Ti < 50. Some of the alloys containing 70 wt pct or more of Zn were prepared from yttrium containing 5000 ppm Ti as a major impurity. Tantalum containers were found to be suitable for all alloys studied and were used throughout the investigation. The pure metals, total weight about 30 g, were sealed in 1 in. diam tantalum crucibles by welding on preformed tantalum covers. A 1/8 in. diam tantalum tube was welded in the base of each crucible for use as a thermocouple well. Welding was done with a heli-arc in a glove box which was initially evacuated and filled with argon. The sealed crucibles were enclosed in stainless steel jackets and heated in an oscillating furnace at temperatures up to 1150°C. Homogeneous liquid alloys were obtained within a half hr at these temperatures except for alloys containing less than 20 pct zinc. The latter alloys were held at 1000º to 1100°C for 2 to 3 days in order to obtain equilibrium. After the initial equilibrations the tantalum crucibles containing the alloys were removed from the steel containers and used directly for differential thermal analyses. Further annealing heat treatments for alloys in which peritectic reactions were involved were carried out in the thermal analyses furnace. After thermal analyses the tantalum crucibles were opened and the alloys sectioned and polished for metallographic examination. In the following discussion alloys referred to as "quenched" were obtained by quenching the sealed stainless steel jacket containing the tantalum crucible and alloy in water. The differential thermal analyses apparatus used was a modified version of the one described in an earlier paper., The graphite crucible was replaced by an inconel crucible, the nickel standard and sampie container were separated by a 1/8 in. MgO plate, no getter was used, and provisions were made to
Citation
APA:
(1963) Institute of Metals Division - Phase Diagram and Thermodynamic Properties of the Yttrium-Zinc SystemMLA: Institute of Metals Division - Phase Diagram and Thermodynamic Properties of the Yttrium-Zinc System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1963.