Institute of Metals Division - Precipitation Phenomena in Cobalt-Tantalum Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 3082 KB
- Publication Date:
- Jan 1, 1960
Abstract
The precipitation phenomena occurring in cobalt-tantalum alloys have been investigated in the temperature range frm 500" to 1050°C by correlating the results of metallographic, X-ray, micro-and macrohardness, and electrical resistivity studies. The property andmacrohardness,changes were found to depend on 1) general precipitation, and 2) lamellar precipitation. Two new intermetallic phases have been identified: 1) a Co3Ta, a metastable ordered face-centered-cubic compound, and 2) a stable ß Co3Ta phase of hexagonal structure. In addition, the previously reported Co2Ta phase was found to exist in two allotropic modifications: the hexagonal MgZn,-type and the cubic MgCu2-type Laves phases. SINCE a large variety of structures can result as a consequence of the decomposition of a solid solution, predictions on the nature of property changes are difficult, if not impossible, to make. For any rational attempt to correlate properties and structures of a precipitation-hardenable alloy, a detailed understanding of the kinetics of decomposition and morphology of phase separation, as well as knowledge of phase relationships, appears to be prerequisite. Information of this type has been accumulated in the past for many alloy systems, both of theoretical and pastforpractical importance.1,2 Although the presence of intermetallic compounds has been reported in cobalt-base alloys,3 the amount of published information on precipitation-hardenable cobalt-base systems is very limited. A survey of the binary phase diagrams of cobalt indicates that cobalt-tantalum alloys might be of interest as typical of other cobalt-base systems in which Laves phases of the A,B type can be precipitated from solid solution. The present work has been undertaken, therefore, to study the kinetics and morphology of the precipitation reaction in this system and to establish a base for a correlation between the structural aspects and properties in this class of alloys. PREVIOUS WORK The only available phase diagram of the cobalt-tantalum system is based on the work of Koster and Mulfinger. According to these authors, the maximum solubility of tantalum in cobalt is about 13 pct (at 1275°C) and. less than 7 pct at room temperature. Tantalum additions lower the temperature of allotropic transformation of cobalt (about 420°C), and at 7 pct Ta, the high-temperature face-centered-cubic modification (ß cobalt) is retained at room temperature. The precipitating phase was originally designated as Co5Ta2 compound (55.2 pct Ta, about 1550°C melting point), but subsequent investigations by wallbaum5" identified this constituent as the A,B-type Laves phase. Wallbaum's data indicate that there are two modifications of this intermetallic compound: one richer in cobalt (Co2.2 Tao.8)of the hexagonal MgNi, type; and another of a higher tantalum content (Co2Ta) of the cubic MgCu, type. On the other hand, Elliott7 found that the cobalt-rich alloy (CO2.10,Tao.~l) was predominantly the cubic MgCu, type at 800°C and a mixture of both the MgCu2 and the hexagonal MgZn,-type Laves phases at 1000°C. At 1200°C, Elliott found only the MgZn, type while at 1400°C, he observed only the MgCu2 type. At the stoichiometric composition, Co2Ta, Elliott reported only the cubic MgCu2-type Laves phase in the temperature range of 600oto 1600°C. The precipitation of the cobalt-tantalum intermetallic compound is accompanied by a marked increase in hardness. According to Koster's4 data, the Brinell hardness of an 8 pct Ta-Co alloy increases from 230 to 340 upon short-time aging at 800°C. EXPERIMENTAL PROCEDURE The binary cobalt-tantalum alloys investigated contained 5, 10, and 15 pct Ta. The range of tantalum additions was thus slightly broader than the reported minimum and maximum solid solubility limits of tantalum in cobalt (7 and 13 pct, respectively)4 The alloys were vacuum-induction melted in a magnesia crucible using cobalt rondelles and technically pure tantalum sheet as raw materials. Deoxidation of the melt was accomplished with carbon, and the chemical analysis of the alloys is given in Table I. The effect of isothermal aging treatments on the progress of precipitation was studied on samples cut from cast ingots. These samples were solution treated for 2 hr at 1250°C and water-quenched. Aging was conducted in the temperature range from 500" to 1050°C for periods between 15 min and 1000 hr and followed by water-quenching. To prevent contamination from the atmosphere, all samples were sealed in evacuated Vycor or quartz tubes for heat-treatments. For solution treatment, argon at 0.2 atmospheric pressure was introduced prior to sealing of the capsule to prevent collapse at high temperature, and titanium sponge was placed at one end of the capsule to act as a getter. MACROHARDNESS The effect of aging on Vickers hardness (Dph) of
Citation
APA:
(1960) Institute of Metals Division - Precipitation Phenomena in Cobalt-Tantalum AlloysMLA: Institute of Metals Division - Precipitation Phenomena in Cobalt-Tantalum Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.