Institute of Metals Division - Preferred Orientation in Rolled and Recrystallized Beryllium

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. Smigelskas C. S. Barrett
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
255 KB
Publication Date:
Jan 1, 1950

Abstract

There have been no publications of the deformation and recrystallization orientations of the metal beryllium, yet pronounced textures would certainly be anticipated since it is close-packed hexagonal in structure. Having an axial ratio approximately that of magnesium, beryllium probably deforms by nearly the same slip and twinning mechanisms that operate in magnesium, and the textures are likely to be similar or but slightly different from the magnesium textures. In the tests reported below this is found to be the case; the textures are found to differ from those of magnesium only in the details of the scatter from the average orientation. This report covers not only samples rolled at room temperature, but some rolled at elevated temperatures. Since magnesium has been suspected by some investigators of altering its crystallo-graphic deformation mechanism at elevated temperatures, it was considered possible that beryllium might do so and alter its textures accordingly. No pronounced alterations were found, however. Unfortunately, the theory of deformation textures is not in a state of development that permits one to deduce the deformation mechanism from a knowledge of the textures, which means that the similarity of textures at different rolling temperatures, reported here, cannot be taken as definite evidence that the deformation mechanism is actually the same at all temperatures. The general similarity of the deformation textures of magnesium and beryllium also extend to the recrystallization textures of the two metals, judging by the pole figures for recrystallized sheet presented in this report. Samples were prepared in the form of composite sheets made up of small pieces stacked in a pile. Each piece was trimmed with scissors so that an edge was parallel to the rolling direction, dipped in paraffin, and assembled into the pack by aligning it under the cross hair of a microscope. As the desired orientation was obtained on each piece it was secured in place by touching with a hot wire to melt the paraffin. A stack of ten or fifteen pieces was built up in this way, then trimmed to the shape of a T; the portion to be X rayed was then etched to the shape of a wire about 0.045 in. diam with 6N HCl. This method of shaping the sample is a modification of that used by Bakarian on magnesium.' The absorption of the rays in the sample was so slight that it caused no difficulty in interpreting the films. Exposures were made with a 0.030 in. diam pinhole, using molybdenum radiation (40 kv, 25 ma, Type A film at 5 cm, 2 to 3 hr exposures). With the recrystallized specimens it was found necessary to oscillate the specimen so as to reduce the spottiness of the lines. A range of oscillation of 5" was SUB- cient to produce reasonably satisfactory patterns, though the quality was somewhat inferior to that of the deformation texture patterns, and only two degrees of intensity were read from the arcs on the films. Typical photo-grams for each of the deformation textures and the recrystallization texture are assembled in Fig 1. The pole figures were plotted in the usual way with the intensity of the various portions of the diffraction rings estimated by eye. Seven to nine films were made of each sample and each was carefully read in plotting the pole figures. Typical series included exposures with the beam normal to the rolling direction and at 11, 26, 41, 56 and 71" to the cross direction, plus two exposures with the beam normal to the cross direction, and at 11 and 79" respectively to the rolling direction. The rolling was in each case considered sufficient to develop the final texture: the reduction by cold rolling was 84 pct (from 0.0045 to 0.0007 in. thickness), following prior hot rolling in longitudinal and transverse directions and recrystallization; the reduction by hot rolling at 800°C was 90 pct (0.010 to 0.001 in.), following similar prior treatment; the reduction by rolling at 350°C was 88 pct (from 0.005 to 0.0006 in.) after similar prior treatment. The recrystallization texture was determined on a sample rolled at 350" to a reduction of 88 pct (0.0165 to 0.002 in.) after similar prior treatment, then mounted between steel strips to keep it flat and annealed at 700" in an atmosphere of argon. Discussion of Results The results of the X ray determinations are assembled in the pole figures of Fig 2, 3, 4 and 5 for rolling at
Citation

APA: A. Smigelskas C. S. Barrett  (1950)  Institute of Metals Division - Preferred Orientation in Rolled and Recrystallized Beryllium

MLA: A. Smigelskas C. S. Barrett Institute of Metals Division - Preferred Orientation in Rolled and Recrystallized Beryllium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account