Institute of Metals Division - Properties of Chromium Boride and Sintered Chromium Boride

The American Institute of Mining, Metallurgical, and Petroleum Engineers
S. J. Sindeband
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
712 KB
Publication Date:
Jan 1, 1950

Abstract

Prior to discussing the metallurgy of sintered chromium borides, it is pertinent to outline some of the reasoning behind this investigation and the purposes underlying the work. This study was initiated as an aproach to the ubiquitous problem of a material for service at high temperatures under oxidizing atmospheres, and it was undertaken with a view to raising the 1500°F (816°C) ceiling to 2000°F (1093°C) or better. For the reason that no small, but rather a major, lifting of the high temperature working limit was being attempted, it was felt appropriate that a completely new approach be taken to this problem. A summary of the thinking behind this approach was published recently by Schwarzkopf.' In briefest terms, it was postulated that the following requirements could be set up for a material which would have high strength at high temperatures. 1. The individual crystals of the material must exhibit high strength interatomic bonds. This automatically leads to consideration of highly refractory materials, since their high energy requirements for melting are related to the strength of their atom-to-atom bonds. 2. On the polycrystalline basis, high boundary strength, superimposed on the above consideration, would also be a necessity. Since this implies control of boundary conditions, the powder metallurgy approach would hold considerable promise. Such materials actually had been fabricated for a number of years, and the cemented carbide is the best example of these. Here a highly refractory crystal was carefully bonded and resulted in a material of extremely high strength. That this strength was maintained at high temperature is exhibited by the ability of the cemented carbide tool to hold an edge for extended periods of heavy service. Nowick and Machlin2,3 have analytically approached the problem of creep and stress-rupture properties at high temperature and developed procedures whereby these properties can be approximately predicted from the room temperature physical constants of a material. The most important single constant in the provision of high temperature strength and creep resistance is shown to be the Modulus of Rigidity. On this basis, they proposed that a fertile field for investigation would be that of materials similar to cemented carbides, which have Moduli of Rigidity that are among the highest recorded. The cemented carbide, however, does not have good corrosion resistance in oxidizing atmospheres and without protection could not be used in gas turbines and similar pieces of equipment. It would be necessary then to attempt the fabrication of an allied material based upon a hard crystal which had good corrosion resistance as well. It was upon these premises that the subject study was undertaken and at an early stage it was sponsored by the U.S. Navy, Office of Naval Research. Since then, it has been carried on under contract with this agency. Chromium boride provided a logical starting point for such research, since it was relatively hard, exhibited good corrosion resistance, and, in addition, was commercially available, since it had found application in hard-surfacing alloys with iron and nickel. That chromium boride did not provide a material that met the ultimate aim of the study results from factors which are subsequently discussed. This, however, does not detract from the basis on which the study was conceived, nor from the value of reporting the results which follow. Chromium Boride While work on chromium boride proper dates back to Moissan,4 there has been a dearth of literature on borides since 1906. Subsequent to Moissan, principal investigators of chromium boride were Tucker and Moody,5 Wede-kind and Fetzer,6 du Jassoneix,7,8,9 and Andrieux." These investigators were generally limited to studies of methods of producing chromium boride and detennining its properties. Some study, however, was devoted to the chromium-boron system by du Jassoneix,7 who did this chemically and metal-lographically. This system is not amenable to normal methods of analysis by virtue of the refractory nature of the alloys involved, and the difficulties of measurement and control of temperature conditions in their range. Dilatometric apparatus is nonexistent for operation at these temperatures. Du Jassoneix made use of apparent chemical differences between two phases observed under the microscope and reported the existence of two definite compounds, namely: Cr3B2 and CrB. These two compounds, he reported, had quite similar chemical characteristics, but were sufficiently different to enable him to separate them. The easiest method for producing chromium boride is apparently the thermite process, first applied by Wede-
Citation

APA: S. J. Sindeband  (1950)  Institute of Metals Division - Properties of Chromium Boride and Sintered Chromium Boride

MLA: S. J. Sindeband Institute of Metals Division - Properties of Chromium Boride and Sintered Chromium Boride. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1950.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account