Institute of Metals Division - Rate of Self-Diffusion in Polycrystalline Magnesium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 386 KB
- Publication Date:
- Jan 1, 1955
Abstract
THE determination of the self-diffusion coefficient of magnesium has been made possible recently by discovery1-1 of a radioactive isotope, Mg28 having a half-life of 21.3 hr,1 and subject to manufacture in useful quantity. In the present research this material was condensed from the vapor phase upon a surface of high purity magnesium. The progress of diffusion of the tracer atoms into polycrystalline magnesium was followed by machining layers and measuring the change in the intensity of radiation as a function of the distance of each layer from the surface. The self-diffusion coefficient was found to be 2.1 X 10-8 sq cm per sec at 627°C, 3.6 X 10-9 sq cm per sec at 551°C, and 4.4 X 10-10sq cm per sec at 468°C; the activation energy is about 32,000 cal per mol. Experimental Procedure Since there was no other published measurement of a diffusion velocity in any magnesium-base material, is was necessary to employ a number of new experimental techniques. The short half-life of Mg28 made it necessary to complete the entire experimental procedure within three or four days. This meant that the work had to be done where a cyclotron was readily accessible and that all operations, prior to the diffusion heat treatment, had to be so designed as to minimize their time requirements. Unusual problems were imposed also by the chemical reactivity of magnesium, its high vapor pressure, and the fact that no satisfactory method for elec-trodepositing magnesium on magnesium is presently available. Finally, the machining and handling of the easily air-borne radioactive-magnesium chips involved certain health hazards, resulting in the need for further experimental restrictions. Preparation of Mg28 The Mg28 was produced in the Carnegie Institute of Technology syncrocyclotron by the neutron spallation of chlorine.5 his involved bombarding a 2 gram crystal of high purity NaCl with a beam of 350 mev protons for a period of 2 hr, after which the crystal was dissolved in warm water and the Mg28 was concentrated and purified by chemical means (see Appendix). About 50 microcuries of Mg28 thus were obtained in the form of magnesium oxinate (8 hydroxyquin-olatc?), which was ignited in air to produce MgO. This in turn was reduced to magnesium metal vapor, by the method of Russell, Taylor, and Cooper," in the vacuum apparatus shown schematically in Fig. 1. Here the essential part is a tantalum ribbon, slightly dished to receive the MgO. The ribbon, pre- viously outgassed at high temperature, is heated to about 1700°C by passing an electric current through it, whereupon tantalum oxide is formed, magnesium vapor is released almost instantaneously, and condensed partly upon the diffusion sample. Diffusion-Sample Preparation: Hot-extruded magnesium rod, 21/32 in. round was used in making the diffusion specimens. The magnesium analyzed as follows: 0.004 pct Al, 0.027 pct Fe, 0.040 pct Mn, 0.0004 pct Cu, 0.0002 pct Ni, and less than 0.01 pct Ca, 0.0004 pct Pb, 0.0011 pct Si, 0.001 pct Sn, and 0.001 pct Zn. A brief study of the crystal texture of this material revealed a sharp fiber texture with the (001) plane roughly parallel to the extrusion axis. Cylindrical samples 1/2 in. long by 5/8 in. were machined from this rod, the end faces dressed on 3/0 emery, and lightly etched with 20 pct HC1 in water. These samples then were annealed for at least twice the intended time of diffusion, at the intended diffusion temperature, in order to stabilize the grain structure at about 1 mm average diameter. The annealing treatments were conducted in argon in the same apparatus and in the same manner as the subsequent diffusion treatments, which will be described presently. Thus, a strain-free plane surface was produced, but there remained a layer of MgO which had largely to be removed before the layer of Mg28 was deposited. Most of this layer was taken off by two light passes over 3/0 emery paper. The balance of the oxide and a thin layer of metal were then removed by etching 5 to 10 min in 4 pct nital (4 pct HNO3 and 96 pct ethyl alcohol) made with absolute alcohol. There followed immediately three quick rinses in: 1-49 1/2 pct methanol, 49 1/2 pct acetone, and 1 pct formic acid, 2-50 pct methanol and 50 pct acetone, and 3-pure benzene. This procedure is essentially that of Sturkey.7 The resulting surface, which was of almost elec-tropolished brightness, remained plane and was free of cold work. It could be kept clean by storing under benzene, or in a desiccator; short exposure
Citation
APA:
(1955) Institute of Metals Division - Rate of Self-Diffusion in Polycrystalline MagnesiumMLA: Institute of Metals Division - Rate of Self-Diffusion in Polycrystalline Magnesium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1955.