Institute of Metals Division - Recrystallization Kinetics of Low Carbon Steel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 885 KB
- Publication Date:
- Jan 1, 1953
Abstract
The paper presents isothermal recrystallization curves for 0.08 and 0.15 pct C steel at subcritical temperatures following small amounts of plastic deformation. The effects of deformation, temperature, and aging on nucleation and growth rates ore described. The free energy of activation for grain boundary migration in steel is given. SEVERAL excellent reviews of the literature have appeared concerning the recrystallization of metals.'-' The present investigation follows the approach advanced by Mehl, Stanley, and Anderson,6-7 in which the rate of recrystallization was analyzed in terms of N, the rate of nucleation, and G, the rate of growth of recrystallization nuclei. Two lots of low carbon, capped steel of the analysis given in Table I were studied. Each lot consisted of a 150 lb coil which had been hot rolled to 0.083 in. and then cold rolled to 0.042 in. at the mill. Strips 0.930 in. wide were sheared perpendicular to the rolling direction. Both steels were normalized before studying their recrystallization characteristics. The strips were cleaned, painted with a magnesia-acetone paste, and made into packs of equal weight, wrapped in 0.002 in. copper foil. The packs were placed in a salt bath at 900°C for 30 min and air cooled. A relief anneal followed in a second salt bath for 15 min at 650°C. The relief anneal was found necessary from early tests in which a longer incubation period and slower rate of recrystallization were observed in relief-annealed lot A steel than in similar material which was strained and recrystallized directly after being normalized. This effect, which indicates the presence of transformation and/or cooling stresses in steel air cooled from above the A, temperature, has also been observed by Samuels8 and Masing.9 Figs. 1 and 2 show the microstructure of lot A and B materials and illustrate the rather uniform No. 8 ASTM grain size produced by this heat treatment. Winlock and Leiter10 observed that strip specimens which had their sharp edges removed elongated more uniformly than those which were not polished. Similarly, when the sheared edges were removed on a belt grinder, it was found in the present investigation that such samples recrystallized more uniformly than did unpolished strips. Therefore, all strips were carefully rounded prior to their extension. The approximate strain limits for the production of large recrystallized grains are from 6 to 12 pct extension." It was found that for the purpose of this investigation, 8 and 9 pct elongation were suitable deformations. The strain rate employed was 0.01 in. per in. per min and produced a yield point elongation of 4 pct. Winlock and Leiter found that mild steel of No. 8 ASTM grain size gave the same yield point elongation when extended at 0.012 in. per in. per min. All of the lot A and B strips extended in tension developed a straight, stretcher strain line at each grip when the upper yield point was reached. The lines were parallel and made an angle of 55" with the edge of the strip. They approached each other with increasing strain and met near the center of the sample at the end of the yield point elongation. Immediately thereafter, a small drop in load was observed and then the load increased in a regular manner with increasing extension. The grips were initially 8 in. apart. After extension, the 6 in. gage length was carefully cut into 1 in. samples. The remainder of the strip was discarded. After a flash pickle in hot 50-50 hydrochloric acid, six samples, each of which had been taken from a different strip, were placed in a basket and submerged in a lead pot for isothermal recrystallization. Although no recovery effect was observed, strain aging did occur after extension. Therefore, samples were always recrystallized within 24 hr after their cold deformation. After recrystallization, the samples were etched with a solution comprised of one part by volume of nitric acid with three parts of water. Bromide printing paper was exposed directly at low magnifications and later used with a mask to measure the desired quantities. First, the average diameter of the largest grain visible in each sample was determined using dividers. Next, the number of recrystallized grains per unit area was counted and recorded as n. Then, for each sample, the combined area of the recrystallized grains was measured by transcribing the grain outlines to standard graph paper. Many determinations of the area of the recrystallized grains were repeated five times and indicated a standard error that was not greater than 25 pct. The average area for six samples was divided by the area of the mask to yield the percentage recrystallized. Recrystallization of 0.08 Pct C Steel The progress of recrystallization at 670°C after 8 pct elongation of lot A steel is shown in Fig. 3, a through f. The shapes of the growing crystals are approximately equiaxed, as is assumed in the
Citation
APA:
(1953) Institute of Metals Division - Recrystallization Kinetics of Low Carbon SteelMLA: Institute of Metals Division - Recrystallization Kinetics of Low Carbon Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1953.